Skip to main content
Log in

CNT-based enhanced GaAs/InAs multiple quantum well solar cell

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This work presents the optimized model and results of numerical simulations and analysis of CNT-based GaAs/InAs multiple quantum wells (from 5 to 70 QWs) GaAs solar cell. These QWs are found to extend the absorption edge beyond that of the GaAs band gap. Further, with the introduction of the wide band gap InGaP back surface field (BSF) layer in the model, efficiency is enhanced due to the reflection of unabsorbed photons from the bottom of the device back into the quantum well. The proposed model uses a heterogeneous CNT layer as top semi-transparent electrode. It is observed that this CNT top layer with lower sheet resistance and better light transmission can significantly improve the overall efficiency. Our optimized cell with 35 number 25 nm quantum well structure with 100 nm CNT top layer with sheet resistance of 128 Ω/□ is found to increase the efficiency up to 34.12% (with CNT top layer) from 32.46%(without CNT top layer). EQE of the cell is nearly 90%. To show the accuracy of our findings, the key phases of the numerical modeling are presented, and the base simulation data are checked using standard experimental data. An essential step toward creating commercially viable QWSCs is the effective application of the suggested CNT-based QWSC model within a modern TCAD tool environment (Silvaco ATLAS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M Steiner 2015 FLATCON® CPV module with 367% efficiency equipped with four-junction solar cells Prog. Photovolt. Res. Appl. 23 10 1323 1329

    Article  Google Scholar 

  2. Chiu, P. T., D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hong, A. Zakaria et al.: 35.8% space and 38.8% terrestrial 5J direct bonded cells. In: Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, pp. 0011–0013. IEEE, 2014.

  3. MA Green K Emery Y Hishikawa W Warta ED Dunlop DH Levi AWY Ho-Baillie 2017 Solar cell efficiency tables (version 49) Prog. Photovoltaics Res. Appl. 25 1 3 13

    Article  Google Scholar 

  4. LC Hirst NJ Ekins-Daukes 2011 Fundamental losses in solar cells Prog. Photovoltaics Res. Appl. 19 3 286 293

    Article  Google Scholar 

  5. AW Blakers 1992 Shading losses of solar-cell metal grids J. Appl. Phys. 71 10 5237 5241

    Article  ADS  CAS  Google Scholar 

  6. MA Green 2003 General temperature dependence of solar cell performance and implications for device modelling Prog. Photovoltaics Res. Appl. 11 5 333 340

    Article  CAS  Google Scholar 

  7. CH Henry 1980 Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells J. Appl. Phys. 51 8 4494 4500

    Article  ADS  CAS  Google Scholar 

  8. Luque, A., Hegedus, S.: eds. Handbook of photovoltaic science and engineering. Wiley, 2011.

  9. Singh, K.J., Sarkar, S.K.: A wide band gap In 0.5 (Al 0.7 Ga 0.3) 0.5 P back surface field layer increases 6% more efficiency in DLAR Dual Junction InGaP solar cell. Energy Efficient Technologies for Sustainability (ICEETS), In: 2016 International Conference on. IEEE, 2016.

  10. JH Choi K Kim SK Ahn A Cho JS Cho JH Yun J Yoo SH Kong 2016 Study on the thickness effect of wide-bandgap CuGaSe2 thin films for applications with tandem solar cells J. Korean Phys. Soc. 69 2 197 201

    Article  ADS  CAS  Google Scholar 

  11. W Ma 2005 Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology Adv. Funct. Mater. 15 10 1617 1622

    Article  CAS  Google Scholar 

  12. KJ Singh SK Sarkar 2012 Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling using optimized InAlGaP BSF layers Opt. Quant. Electron. 43 1 1 21

    Article  CAS  Google Scholar 

  13. Adams, J.G.J., Elder, W., Stavrinou, P., Barnham, K.W.J. and Ekins-Daukes, N.J.: Efficiency enhancement in strain-balanced quantum well solar cells via anisotropic emission. In: Proc. 24th European Photovoltaic Solar Energy Conference (pp. 19–21) 2009.

  14. O Jani C Honsberg 2006 Absorption and transport via tunneling in quantum-well solar cells Sol. Energy Mater. Sol. Cells 90 18 3464 3470

    Article  CAS  Google Scholar 

  15. Barnham et al. K.W.J.: Nanostructured materials for solar energy conversion, Soga, T. (Ed.), Elsevier B.V., 517 (2006)

  16. JC Rimada L Hernández JP Connolly KWJ Barnham 2007 Conversion efficiency enhancement of AlGaAs quantum well solar cells Microelectron. J. 38 4 513 518

    Article  CAS  Google Scholar 

  17. SILVACO Data Systems Inc.: Silvaco ATLAS User’s Manual (2013)

  18. A Thilagam J Singh P Stulik 1998 Optimizing gallium arsenide multiple quantum wells as high-performance photovoltaic devices Sol. Energy Mater. Sol. Cells 50 1 243 249

    Article  CAS  Google Scholar 

  19. S Iijima 1991 Helical microtubules of graphitic carbon Nature 354 6348 56

    Article  ADS  CAS  Google Scholar 

  20. L Yu C Shearer J Shapter 2016 Recent development of carbon nanotube transparent conductive films Chem. Rev. 116 22 13413 13453

    Article  CAS  PubMed  Google Scholar 

  21. T Dürkop 2004 Extraordinary mobility in semiconducting carbon nanotubes Nano Lett. 4 1 35 39

    Article  ADS  Google Scholar 

  22. J Yan 2013 Carbon nanotubes (CNTs) enrich the solar cells Sol. Energy 96 239 252

    Article  ADS  CAS  Google Scholar 

  23. E Shi 2022 TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15% Sci. Reports 2 884

    Google Scholar 

  24. Y Jung 2012 Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells Nano Lett. 13 1 95 99

    Article  ADS  PubMed  Google Scholar 

  25. KJ Singh TJ Singh D Chettri SK Sarkar 2017 A thin layer of carbon nano tube (CNT) as semi-transparent charge collector that improve the performance of the GaAs Solar Cell Optik-Int. J. Light Electron Opt. 135 256 270

    Article  CAS  Google Scholar 

  26. Pimparkar, N., Chowalla, M., Alam, M. A.: Device optimization for organic photovoltaics with CNT networks as transparent electrode. In: Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd IEEE. IEEE, (2008)

  27. MS Dresselhaus G Dresselhaus R Saito 1995 Physics of carbon nanotubes Carbon 33 7 883 891

    Article  CAS  Google Scholar 

  28. D Stauffer A Aharony 1992 Introduction to percolation theory Taylor and Francis London

    Google Scholar 

  29. Brunton, J.: TCAD Analysis of heating and maximum current density in carbon nanofiber interconnects. Master’s Thesis, Naval Postgraduate School, (2011)

  30. Xiao, G., Tao, Y., Lu, J., Zhang, Z.: Highly transparent and conductive carbon nanotube coatings deposited on flexible polymer substrate by solution method. In: Proc. 3rd International Nanoelectronics Conference (INEC), pp.208–209, 3–8 Jan. (2010)

  31. JC Rimada L Hernandez JP Connolly KWJ Barnham 2005 Quantum and conversion efficiency calculation of AlGaAs/GaAs multiple quantum well solar cells Phys. Stat. Sol. 242 9 1842 1845

    Article  ADS  CAS  Google Scholar 

  32. Davies, J.H.: The physics of low-dimensional semiconductors: an introduction. Cambridge university press (1997)

  33. NG Anderson 1995 Ideal theory of quantum well solar cells J. ApplPhys. 78 1850

    Article  ADS  CAS  Google Scholar 

  34. Rimada, J.C.: Modelacio´n de celdassolares p–i–n de AlxGa1 2 xAs con pozoscua´nticos en la regio´nintrı´nseca, MSc Thesis, Universidad de la Habana, (2000)

  35. JC Rimada L Hernandez 2001 Modelling of ideal AlGaAs quantum well solar cell Microelectron. J. 32 719

    Article  CAS  Google Scholar 

  36. A Mohanbabu N Mohankumar R SaravanaKumar D Godwinraj 2017 In0.7Ga0.3As/InAs/In0.7Ga0.3As composite channel double gate (DG)-HEMT devices for high-frequency applications J. Comput. Electron. 16 3 732 740

    Google Scholar 

  37. A Mohanbabu N Mohankumar R Saravanakumar 2018 Comparative assessment of InGaAs sub-channel and InAs composite channel double gate (DG)-HEMT for Sub millimeter wave applications AEU-Int. J. Electron. C. 83 462 469

    Article  Google Scholar 

  38. A Mohanbabu N Mohankumar R SaravanaKumar 2017 Simulation of InGaAs Sub-channel DG-HEMT for analog/RF application Int. J. Electron. 105 1 11

    Google Scholar 

  39. G Bastard 1988 Wave mechanics applied to semiconductor heterostructures Editions de Physique Paris

    Google Scholar 

  40. MA Green 1981 Solar cell fill factors: general graph and empirical expressions Solid State Electron. 24 8 788 789

    Article  ADS  CAS  Google Scholar 

  41. RS Dhar SG Razavipour E Dupont C Xu S Laframboise Z Wasilewski Q Hu D Ban 2014 Direct nanoscale imaging of evolving electric field domains in quantum structures Sci. Reports 4 1 7183

    ADS  Google Scholar 

  42. RS Dhar Lu Li H Ye SG Razavipour X Wang RQ Yang D Ban 2015 Nanoscopically resolved dynamic charge-carrier distribution in operating interband cascade lasers Laser Photon. Rev. 9 2 224 230

    Article  ADS  CAS  Google Scholar 

  43. R Barik RS Dhar F Awwad MI Hussein 2023 Evolution of type-II hetero-strain cylindrical-gate-all-around nanowire FET for exploration and analysis of enriched performances Sci. Reports 13 1 11415

    ADS  CAS  Google Scholar 

  44. N Watanabe H Yokoyama N Shigekawa K Sugita A Yamamoto 2012 Barrier thickness dependence of photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells Jpn. J. Appl. Phys. 51 10

    Article  Google Scholar 

  45. JJ Wierer DD Koleske SR Lee 2012 Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells Appl. Phys. Lett. 100 11 111119

    Article  ADS  Google Scholar 

  46. FL Wu SL Ou RH Horng YC Kao 2014 Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications Sol. Energ. Mat. Sol. Cells. 112 233 240

    Article  Google Scholar 

  47. K Lee JD Zimmerman TW Hughes SR Forrest 2014 Non-destructive wafer recycling for low-cost thin-film flexible optoelectronics Adv. Funct. Mater. 24 4284 5291

    Article  CAS  Google Scholar 

  48. A Benlekhdim A Cheknane LS Faxi HS Hilal 2018 Optik 163 8

    Article  ADS  CAS  Google Scholar 

  49. M Verma GP Mishra 2022 Recombination and mobility analysis of voltage preserved type-A InP multiple quantum well GaInP solar cell Indian J. Phys. 96 14 4119 4130

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The completion of this work would not have been possible without the support from Electronics and Communication Engineering Department, Manipur Institute of Technology, Imphal, India.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

D.W., K.J.S. and R.S.D. conducted the experiment, design, material preparation, data analysis, and prepared most of the figures and tables. K.J.S. and R.S.D. are joint Supervisor of D.W. D.W initiated the research and study. D.W and K.J.S contributed to the numerical modeling and developing the novel idea of the work and formulation of simulation code. R.S.D contributes toward the improvements in the manuscript. All the authors discussed the results and contributed to the manuscript at various stages. K.J.S. is the corresponding author. All authors have proofread and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Khomdram Jolson Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warepam, D., Singh, K.J. & Dhar, R.S. CNT-based enhanced GaAs/InAs multiple quantum well solar cell. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02138-9

Keywords

Navigation