Skip to main content
Log in

Design of a MIM sensor using an optical resonator and GMDH algorithm for high efficiency applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper presents the design and simulation of an optical sensor using a metal–insulator-metal (MIM) configuration, employing the finite difference time domain method to analyze the structure of the proposed sensor. The present study investigates the influence of both geometric and physical parameters of a designed resonator on the light transmission rate of the suggested sensor. Through the simulation of a rake-shaped resonator within the 600–2000 nm wavelength spectrum, we assess the repercussions of varying its geometric configuration. To optimize the sensor design, we integrated the group method of data handling neural network algorithm. Our results reveal an optimal design incorporating a resonator height of 80 nm and an assembly of three such resonators, achieving an excellent operational spectrum for the wavelength of the sensor, accompanied by a remarkable sensitivity of 2587.87 nm per refractive index unit. Additionally, by increasing the width of the resonator, it was observed that the wavelength of the resonance in the transmission rate shifted to longer wavelengths, which expands the application of the proposed MIM sensor. This finding underscores the potential for deploying the sensor in diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author, Mohsen Hayati, upon reasonable request.

References

  1. Vasavi, B., Bhargava, Ch., Hemanth Chowdary, K.: Optical computing alternative for high speed interconnectivity and storage. Int. J. Inf. Commun. Technol. 2, 2 (2012)

    Google Scholar 

  2. Wang, Y., Huo, Y., Cui, P., Song, M., Zhao, C., Liao, Z., Xie, Y.: Ultrahigh FOM and multiple Fano resonances in MIM waveguide systems with half-ring and rectangular cavities. J. Comput. Electr. 22(3), 839–848 (2023). https://doi.org/10.1007/s10825-023-02022-y

    Article  Google Scholar 

  3. Zonouri, S.A., Hayati, M.: A compact graphene-based dual-band band-stop filter using new hook-shaped resonator for THz applications. Mater. Sci. Semicond. Process. 153, 107150 (2023). https://doi.org/10.1016/j.mssp.2022.107150

    Article  CAS  Google Scholar 

  4. Sahoo, M.K., Rani, M.T., Patnaik, D., Palai, G. Detection of water content in biological tissues using a He-Ne laser and a one-dimensional (1-D) photonic waveguide. Lasers Eng. 55‏ (2023)

  5. Swain, K., Shanmugavadivu, N., Vasudevan, B., Sahu, S., Palai, G. Realization of coronavirus testing kit using a combination of a triangular photonic crystal (PhC) structure and a 412 nm laser beam. Lasers Eng. 54‏ (2023)

  6. Basri, R., Dhasarathan, V., Palai, G., Alam, M.K., Ganji, K.K., Munisekhar, M.S., Nagarajappa, A.K.: A versatile study on neuron deformation of brain through photonic structure. Alex. Eng. J. 71, 339–346 (2023). https://doi.org/10.1016/j.aej.2023.03.058

    Article  Google Scholar 

  7. Palai, G., Tripathy, S.K., Muduli, N., Patnaik, D., Patnaik, S.K.: A novel method to measure the strength of CygelTM by using two dimensional photonic crystal struct ures. AIP Conf. Proc. 1461, 383–386 (2012)

    Article  ADS  CAS  Google Scholar 

  8. Hocini, A., Ben Salah, H., Temmar, M.N.E.: Ultra-high-sensitive sensor based on a metal–insulator–metal waveguide coupled with cross cavity. J. Comput. Electron. 20(3), 1354–1362 (2021). https://doi.org/10.1007/s10825-021-01706-7

    Article  CAS  Google Scholar 

  9. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Sahu, S.K., Sahu, S., Mishra, C.S., Palai, G.: Analysis of reflected frequency band of metamaterial grating at THz frequency: a future application of filter. Optik 127(10), 4547–4550 (2016)

    Article  ADS  CAS  Google Scholar 

  11. Faghani, A.A., Rafiee, Z., Amanzadeh, H., Yaghoubi, E., Yaghoubi, E.: Tunable band-pass plasmonic filter and wavelength triple-channel demultiplexer based on square nanodisk resonator in MIM waveguide. Optik 257, 168824 (2022). https://doi.org/10.1016/j.ijleo.2022.168824

    Article  ADS  CAS  Google Scholar 

  12. Wang, T.B., Wen, X.W., Yin, C.P., Wang, H.Z.: The transmission characteristics of surface plasmon polaritons in ring resonator. Opt. Express 17(26), 24096–24101 (2009). https://doi.org/10.1364/OE.17.024096

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Chai, J., Xie, Y., Zhang, L., Ye, Y., Liu, B., Jiang, X., Tan, J.: A novel plasmonic device: Filtering and switching functions with quasi-rectangular spectrum based on dual Fano resonances. Optics Laser Technol. 157, 108692 (2023). https://doi.org/10.1016/j.optlastec.2022.108692

    Article  CAS  Google Scholar 

  14. Zhou, C., Huo, Y., Guo, Y., Niu, Q.: Tunable multiple fano resonances and stable plasmonic band-stop filter based on a metal-insulator-metal waveguide. Plasmonics 16(5), 1735–1743 (2021). https://doi.org/10.1007/s11468-021-01437-2

    Article  CAS  Google Scholar 

  15. Chao, C.T.C., Chau, Y.F.C., Kooh, M.R.R., Lim, C.M., Thotagamuge, R., Chiang, H.P.: Ultrawide bandstop filter with high sensitivity using semi-circular-like resonators. Mater. Sci. Semicond. Process. 151, 106985 (2022). https://doi.org/10.1016/j.mssp.2022.106985

    Article  CAS  Google Scholar 

  16. Abbaszadeh-Azar, O., Abedi, K.: A wavelength demultiplexing structure based on the multi-teeth-shaped plasmonic waveguide structure. Plasmonics 15, 1403–1409 (2020). https://doi.org/10.1007/s11468-020-01149-z

    Article  Google Scholar 

  17. Abderrahmane, I., Hadjira, B., Mehadji, A., Bachir, R.: High performance single mode plasmonic filter and efficient wavelength demultiplexing based on nanodisk resonators. Opt. Quant. Electron. 55(5), 413 (2023). https://doi.org/10.1007/s11082-023-04673-4

    Article  Google Scholar 

  18. Tian, M., Lu, P., Chen, L., Liu, D., Peyghambarian, N.: Plasmonic Bragg reflectors based on metal-embedded MIM structure. Optics Commun. 285(24), 5122–5127 (2012). https://doi.org/10.1016/j.optcom.2012.07.072

    Article  ADS  CAS  Google Scholar 

  19. Butt, M.A., Khonina, S.N., Kazanskiy, N.L.: A compact design of a modified Bragg grating filter based on a metal-insulator-metal waveguide for filtering and temperature sensing applications. Optik 251, 168466 (2022). https://doi.org/10.1016/j.ijleo.2021.168466

    Article  ADS  CAS  Google Scholar 

  20. Zheng, G.G., Xu, L.H., Liu, Y.Z., Su, W.: Optical filter and sensor based on plasmonic-gap-waveguide coupled with T-shaped resonators. Optik 126(23), 4056–4060 (2015). https://doi.org/10.1016/j.ijleo.2015.07.206

    Article  ADS  CAS  Google Scholar 

  21. Zavvari, M., Azar, T.H., et al.: Tunable band-stop plasmonic filter based on square ring resonators in a metal-insulator-metal structure. J. Mod. Opt. 64(20), 2221–2227 (2017). https://doi.org/10.1080/09500340.2017.1349195

    Article  ADS  Google Scholar 

  22. Zegaar, I., Hocini, A., Harhouz, A., Khedrouche, D., Salah, H.B.: An ultra-wideband bandstop plasmonic filter in mid-infrared band based on metal-insulator-metal waveguide coupled with an hexagonal resonator. J. Optics (2023). https://doi.org/10.1080/09500340.2017.1349195

    Article  Google Scholar 

  23. Cui, P., Huo, Y., Zhang, Z., Wang, Y., Song, M., Zhao, C., Liao, Z.: Band-stop filter and narrow band-pass filter based on metal-insulator-metal waveguide. Micro Nanostruct. (2023). https://doi.org/10.1016/j.micrna.2022.207503

    Article  Google Scholar 

  24. Li, Z., Liu, J., Feng, L., Pan, Y., Tang, J., Li, H., Liu, W.: Monolithic MOF-based metal–insulator–metal resonator for filtering and sensing. Nano Lett. (2023). https://doi.org/10.1021/acs.nanolett.2c04428

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kamari, M., Khosravi, S., Hayati, M.: Ultra-wide bandstop infrared MIM filter using aperture coupled square cavities. Phys. Scr. 98(1), 015509 (2022). https://doi.org/10.1088/1402-4896/aca43d

    Article  ADS  Google Scholar 

  26. Fan, H., Tian, J., Yang, R.: Study of Fano resonance and its application in MIM waveguide using a k-shaped resonator. Opt. Quant. Electron. 55(1), 75 (2023). https://doi.org/10.1007/s11082-022-04297-0

    Article  Google Scholar 

  27. Kunz, K.S., Luebbers, R.J.: The finite difference time domain method for electromagnetics. CRC Press (1993)

    Google Scholar 

  28. Taflove, A., Hagness, S.C., Piket-May, M.: Computational electromagnetics: the finite-difference time-domain method. Electr. Eng. Handbook 3(629–670), 15 (2005)

    Google Scholar 

  29. Liu, B., Liu, Y.-F., Li, S.-J., He, X.-D.: Rotation and conversion of transmission mode based on a rotatable elliptical core ring resonator. Optics Commun. 369, 44–49 (2016). https://doi.org/10.1016/j.optcom.2016.02.033

    Article  ADS  CAS  Google Scholar 

  30. Mulashani, A.K., Shen, C., Nkurlu, B.M., Mkono, C.N., Kawamala, M.: Enhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log data. Energy 239, 121915 (2022). https://doi.org/10.1016/j.energy.2021.121915

    Article  Google Scholar 

  31. Tian, X., Jiang, Y., Liang, C., Liu, C., Ying, Y., Wang, H., Qian, P.: A novel condition monitoring method of wind turbines based on GMDH neural network. Energies 15(18), 6717 (2022). https://doi.org/10.3390/en15186717

    Article  Google Scholar 

  32. Khajehzadeh, M., Keawsawasvong, S., Nehdi, M.L.: Effective hybrid soft computing approach for optimum design of shallow foundations. Sustainability 14(3), 1847 (2022). https://doi.org/10.3390/su14031847

    Article  Google Scholar 

  33. Ivakhnenko, A.G.: Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybern. 4, 364–378 (1971). https://doi.org/10.1109/TSMC.1971.4308320

    Article  MathSciNet  Google Scholar 

  34. Ivakhnenko, A.G., Savchenko, E.A.: Investigation of efficiency of additional determination method of the model selection in the modeling problems by application of GMDH algorithm. J. Automat. Inf. Sci. (2008). https://doi.org/10.1615/JAutomatInfScien.v40.i3.50

    Article  Google Scholar 

  35. Mueller, J.A., Ivachnenko, A.G., Lemke, F.: GMDH algorithms for complex systems modelling. Math. Comput. Model. Dyn. Syst. 4(4), 275–316 (1998). https://doi.org/10.1080/13873959808837083

    Article  Google Scholar 

  36. Li, X., Wei, Z., Liu, Y., Zhong, N., Tan, X., Shi, S., Liang, R.: Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator. Phys. Lett. A 380(1–2), 232–237 (2016). https://doi.org/10.1016/j.physleta.2015.10.035

    Article  ADS  CAS  Google Scholar 

  37. Xiong, C., Li, H., Xu, H., Zhao, M., Zhang, B., Liu, C., Wu, K.: Coupling effects in single-mode and multimode resonator-coupled system. Opt. Express 27(13), 17718–17728 (2019). https://doi.org/10.1364/OE.27.017718

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Cui, Z. Nanofabrication. Course notes, ECE, 730‏ (2008)

  39. Prasad, P.N.: Nanophotonics. John Wiley & Sons (2004)

    Book  Google Scholar 

  40. Chen, Y., Shu, Z., Zhang, S., Zeng, P., Liang, H., Zheng, M., Duan, H.: Sub-10 nm fabrication: methods and applications. Int. J. Extreme Manuf. 3(3), 032002 (2021). https://doi.org/10.1088/2631-7990/ac087c

    Article  CAS  Google Scholar 

  41. Butt, M.A., Khonina, S.N., Kazanskiy, N.L.: A plasmonic colour filter and refractive index sensor applications based on metal–insulator–metal square µ-ring cavities. Laser Phys. 30(1), 016205 (2019). https://doi.org/10.1088/1555-6611/ab5578

    Article  ADS  CAS  Google Scholar 

  42. Shahamat, Y., Ghaffarinejad, A., Vahedi, M.: Plasmon induced transparency and refractive index sensing in two nanocavities and double nanodisk resonators. Optik 202, 163618 (2020). https://doi.org/10.1016/j.ijleo.2019.163618

    Article  ADS  CAS  Google Scholar 

  43. Khani, S., Hayati, M.: Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer. Sci. Rep. 12(1), 5246 (2022). https://doi.org/10.1038/s41598-022-09213-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rumaldo, Y., Hernandez-Figueroa, H.E.: Plasmonic sensor design using gold and silicon nitride waveguide at visible and NIR wavelengths. Opt. Laser Technol. 153, 108196 (2022). https://doi.org/10.1016/j.optlastec.2022.108196

    Article  CAS  Google Scholar 

  45. Guo, J., Yang, X., Wang, Y., Wang, M., Hua, E., Yan, S.: Refractive index nanosensor with simple structure based on fano resonance. IEEE Photonics J. 12(4), 1–10 (2020). https://doi.org/10.1109/JPHOT.2020.3015988

    Article  Google Scholar 

  46. Wang, J., Feng, H., Zhang, J., Liu, C., Zhang, Z., Fang, D., Gao, Y.: Plasmonic band-stop MIM waveguide filter based on bilateral asymmetric equilateral triangular ring. Optik 265, 169535 (2022). https://doi.org/10.1016/j.ijleo.2022.169535

    Article  ADS  Google Scholar 

  47. Janković, N., Cselyuszka, N.: High-resolution plasmonic filter and refractive index sensor based on perturbed square cavity with slits and orthogonal feeding scheme. Plasmonics 14(3), 555–560 (2019). https://doi.org/10.1007/s11468-018-0834-z

    Article  CAS  Google Scholar 

  48. Liu, C., Zhang, J., Feng, H., Fang, D., Wang, J., Wang, L., Gao, Y.: Bifunctional MIM device with narrowband filtering and high-performance sensing. Micro Nanostruct. 169, 207364 (2022). https://doi.org/10.1016/j.micrna.2022.207364

    Article  CAS  Google Scholar 

  49. Kokabi, M., Ghorbani, S., Moayed, S.H.: Tunable bandpass plasmonic filter based on graphene as the nonlinear Kerr material. Laser Phys. 31(2), 026201 (2021). https://doi.org/10.1088/1555-6611/abd5b0

    Article  ADS  CAS  Google Scholar 

  50. Hasan, M., Mayoa, F., Hossain, M.S., Ahmed, R., Hossain, M., Ali, K., Islam, S.: Plasmonic corrugated waveguide coupled to a rectangular nano-resonator as an optical filter. OSA Continuum 3(12), 3314–3323 (2020). https://doi.org/10.1364/OSAC.403762

    Article  CAS  Google Scholar 

  51. Swain, K., Mondal, S.R., Mohanty, M.N., Tripathy, S.K., Palai, G.: Realization of a temperature sensor using both two-and three-dimensional photonic structures through a machine learning technique. J. Comput. Electron. 20(4), 1588–1598 (2021). https://doi.org/10.1007/s10825-021-01725-4

    Article  CAS  Google Scholar 

  52. Kumar, B.A., Sahu, S.K., Palai, G., Bala, I.: Modelling and performance analysis of ring resonator-based refractive-index sensor for bacterial water detection. Opt. Quant. Electron. 55(3), 263 (2023). https://doi.org/10.1007/s11082-022-04507-9

    Article  CAS  Google Scholar 

  53. Palai, G., Mudului, N., Sahoo, S.K., Tripathy, S.K. Realization of potassium chloride sensor using photonic crystal fiber. Soft Nanosci. Lett. 2013‏ (2013)

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MH: Writing-Original draft preparation, Conceptualization, Supervision, Project administration. SAZ: Software, Validation, Formal analysis, Language review, Methodology, Writing-Original draft preparation.

Corresponding author

Correspondence to Mohsen Hayati.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zonouri, S.A., Hayati, M. Design of a MIM sensor using an optical resonator and GMDH algorithm for high efficiency applications. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02136-x

Keywords

Navigation