Skip to main content
Log in

A piezoelectric sensor with high accuracy and reduced measurement error

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A piezoelectric sensor is a type of transducer that utilizes the piezoelectric effect to convert changes in pressure, acceleration temperature, or force into an electrical charge. This unique property makes piezoelectric sensors valuable for a wide range of applications in various industries. In this work, the main focus is on studying the effects of piezoelectric materials and exploring the functionality of piezoelectric sensors. The physical behavior of the sensor is thoroughly examined and a mathematical formula relating the accuracy of the sensor to relative movement or vibratory displacement is derived. The developed model is verified through simulations and experimental tests. By carefully selecting the appropriate damping rate, it is possible to enhance the parameters of the piezoelectric sensor and advance the technique of vibratory analysis. Overall, this research aims to enhance our understanding of piezoelectric materials and sensors, and how they can be effectively utilized in various applications involving vibratory analysis. The findings from this study can contribute to better design and implementation of piezoelectric sensors, improving their accuracy and effectiveness in capturing and analyzing vibratory movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data used in this work are contained in the manuscript.

References

  1. Boukazouha, F.: Conception, Réalisation, Modélisation et Caractérisation Expérimentale d'un Transformateur de Tension de Type Rosen Thèse de doctorat en Matériaux et Composants, Université des Sciences et de la Technologie Houari Boumediène (2016)

  2. Ghemari, Z., Saad, S.: Development of model and enhancement of measurement precision of sensor vibration. IEEE Sens. J. 12(12), 3454–3459 (2012). https://doi.org/10.1109/JSEN.2012.2210789

    Article  ADS  Google Scholar 

  3. Ghemari, Z., et al.: Appropriate choice of damping rate and frequency margin for improvement of the piezoelectric sensor measurement accuracy. J. Adv. Manuf. Syst. 20(3), 537–548 (2021). https://doi.org/10.1142/S0219686721500256

    Article  Google Scholar 

  4. Isarakorn, D.: Epitaxial Piezoelectric MEMS on Silicon Thèse de doctorat, Ecole polytechnique fédérale de Lausanne (2011)

  5. Ghemari, Z.: Improvement of the piezoelectric sensor by the progress of the measurement accuracy.In: IEEE International Conference on Smart Materials and Spectroscopy (SMS’2018), Yassmine Hammamet (Tunisia) (2018)

  6. Ghemari, Z., Saad, S.: The use of mechanical sensitivity model to enhance capacitive sensor characteristics. Analog. Integr. Circuits. Signal. 99(2), 349–357 (2019). https://doi.org/10.1007/s10470-018-01383-w

    Article  Google Scholar 

  7. Ghemari, Z., et al.: New model of piezoelectric accelerometer relative movement modulus’. Trans. Inst. Meas. Control. 37(8), 932–941 (2015). https://doi.org/10.1177/0142331214549572

    Article  Google Scholar 

  8. Breneur, C.: “Eléments de maintenance préventive des machines tournantes dans le cas de défauts combinés d’engrenages et de roulements’’ Doctorat de l’institut national des sciences appliquées de Lyon (MEGA) (2002)

  9. Ghemari, Z., et al.: Enhancement of capacitive accelerometer operation by parameters improvement. Intern. J. Numer. Modelli. Electron. Netw. Devices. Fields. 32(22), e2568 (2019). https://doi.org/10.1002/jnm.2568

    Article  Google Scholar 

  10. Ghemari, Z., Saad, S.: Parameters improvement and suggestion of new design of capacitive accelerometer’. Analog. Integr. Circuits. Signal. Process. 92, 443–451 (2017). https://doi.org/10.1007/s10470-017-0970-y

    Article  Google Scholar 

  11. Ghemari, Z., Saad, S.: Modeling and enhancement of mechanical sensitivity of vibration sensor’. J. Vib. Control 20(14), 2234–2240 (2014). https://doi.org/10.1177/1077546313486507

    Article  Google Scholar 

  12. Tomache, A.: Communication SME-ERCE, Symposium sur la maintenance industrielle, AEID-IAP. Alger (2001)

  13. Ghemari, Z., et al.: New formula for the piezoresistive accelerometer motion acceleration and experimental validation’. J. Adv. Manuf. Systems. 16(01), 57–65 (2017). https://doi.org/10.1142/S0219686717500044

    Article  Google Scholar 

  14. Lakehal, A., Ghemari, Z.: Suggestion for a new design of the piezoresistive accelerometer’. Ferroelectrics 493(1), 93–102 (2026). https://doi.org/10.1080/00150193.2016.1134024

    Article  CAS  ADS  Google Scholar 

  15. Medeiros, K.A.R., Barbosa, C.R.H., de Oliveira, E.C.: Flow measurement by piezoelectric accelerometers: application in the oil ındustry. Pet. Sci. Technol. 33(13–14), 1402–1409 (2015). https://doi.org/10.1080/10916466.2015.1044613

    Article  CAS  Google Scholar 

  16. Ghemari, Z., Lakehal, A., Saad ,S.: Minimisation of resonance phenomena effect of piezoresistive accelerometer. In: 4th International Conference on Systems and Control (ICSC), pp. 243–246, (2015). https://doi.org/10.1109/ICoSC.2015.7152757

  17. Ghemari, Z., Saad, S.: Reducing the measurement error to optimize the sensitivity of the vibration sensor. IEEE. Sensors. J. 14(5), 1527–1532 (2014). https://doi.org/10.1109/JSEN.2014.2298493

    Article  ADS  Google Scholar 

  18. Ghemari, Z., Saad, S.: Improvement of piezoresistive accelerometer performance. In: 3rd International Conference on Systems and Control, Algiers, pp. 759–762, (2013). https://doi.org/10.1109/ICoSC.2013.6750943

  19. Jyh-Cheng, Y., Fu-Hsin, L.: Design and fabrication of the micro-accelerometer using piezoelectric thin films. Ferroelectrics 263(1), 101–106 (2011). https://doi.org/10.1080/00150190108225183

    Article  Google Scholar 

  20. Denghua, Li., Xiangyu, G., Zhixin, Z., Feng, Z.: Research on temperature property of piezoelectric vibration accelerometer based on cymbal transducer. Ferroelectrics 405(1), 126–132 (2010). https://doi.org/10.1080/00150193.2010.483190

    Article  CAS  ADS  Google Scholar 

  21. Lumentut, M.F., Teh, K.K., Howard, I.: ’Computational FEA model of a coupled piezoelectric sensor and plate structure for energy harvesting’. Aust. J. Mech. Eng. 5(2), 199–208 (2015). https://doi.org/10.1080/14484846.2008.11464548

    Article  Google Scholar 

  22. Z Ghemari: Analysis and optimization of vibration sensor’’, IEEE International Conference on Smart Materials and Spectroscopy (SMS’2018), Tunisia, pp. 1–5, (2018). https://doi.org/10.1109/SMS44485.2018.9101387

  23. Ghemari, Z.:Upgrading of piezoresistive accelerometer response In: 8th International Conference on modeling, Identification and Control, Algiers, Algeria, pp. 544–547, (2016). https://doi.org/10.1109/ICMIC.2016.7804172

  24. Zine, G.: Modélisation, simulation et analyze expérimentale du capteur de vibration (accéléromètre)’ Université de M’sila (2013)

  25. Nishshanka, N.H., Donghwan, K., Michael, L.K., Neal, A.H.: Micromachined piezoelectric accelerometers via epitaxial silicon cantilevers and bulk silicon proof masses. J. Microelectromech. Systems. 22(6), 1438–1446 (2013). https://doi.org/10.1109/JMEMS.2013.2262581

    Article  CAS  Google Scholar 

  26. Ghemari, Z., Saad, S.: Defects diagnosis by vibration analysis and improvement of vibration sensor measurement accuracy. Sens. Lett. 17(8), 608–613 (2019). https://doi.org/10.1166/sl.2019.4118

    Article  Google Scholar 

  27. Ghemari, Z.: Decrease of the resonance phenomenon effect and progress of the piezoelectric sensor correctness. In: International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Algeria, pp. 1–5, (2018). https://doi.org/10.1109/CISTEM.2018.8613612

  28. Ghemari, Z., Saad, S.: Simulation and experimental validation of new model for the piezoresistive accelerometer displacement. Sens. Lett. 15(2), 132–136 (2017). https://doi.org/10.1166/sl.2017.3792

    Article  Google Scholar 

  29. Lv, H., Qin, L., Liu, J.: “Principle research on a single mass six-degree-of freedom accelerometer with six groups of piezoelectric sensing elements.” IEEE Sens. J. 15(6), 3301–3309 (2015). https://doi.org/10.1109/JSEN.2014.2387829

    Article  ADS  Google Scholar 

  30. Han, R., Wang, J., Xu, M., Guo, H.: Design of a tri-axial micro piezoelectric accelerometer. In: Symposium on Piezoelectricity, Acoustic waves, and Device Applications, 21–24, Xi’an, Shaanxi, CHINA, pp. 66–70, (2016). https://doi.org/10.1109/SPAWDA.2016.7829958

  31. Lakehal, A. et al.: Une nouvelle méthode de diagnostic basée sur la conversion d’un arbre de défaillances en réseau bayésien. In: International Conference on Industrial Engineering and Manufacturing, Université de Batna, Algerie, vol. 507, pp. 514, (2014)

  32. Saad, S., et al.: Transducer (accelerometer) modeling and simulation’. Asian. J. Inf. Technol. 6(1), 54–57 (2007)

    Google Scholar 

  33. Ghemari, Z.: Modélisation et simulation d'un capteur de vibration (Accélérométre)’, Mémoire Magister, Université Badji Mokhtar, Annaba, (2006)

  34. Xu, M., Wang, J., Han, R., Zhou, H., Guo, H.: Analytical and finite element analysis of a new Tri-axial piezoelectric accelerometer. In: 2016 Symposium on Piezoelectricity, Acoustic waves, and Device Applications, Xi’an, Shaanxi, China, pp. 71–75, (2016). https://doi.org/10.1109/SPAWDA.2016.7829959

  35. Ghemari, Z., et al.: Improvement of the relative sensitivity for obtaining a high performance piezoelectric sensor’. IEEE Instrum. Meas. Mag. 26(4), 49–56 (2023). https://doi.org/10.1109/MIM.2023.10146563

    Article  Google Scholar 

  36. Lakehal, A. et al.: Proposition d’une nouvelle formule d'accélération du mouvement pour l'accéléromètre. In: 3ème Conférence Internationale sur la Maintenance et la Sécurité Industrielle, Skikda, Algérie, (2015)

  37. Ghemari, Z. et al: Une approche probabiliste pour la gestion des réseaux de distribution d’eau potable. In: 3ème Conférence Internationale sur la Maintenance et la Sécurité Industrielle, Skikda, Algérie, (2015)

  38. Ghemari, Z. et al: “Vibration sensor mechanical sensitivity improvement’’, 2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Algeria, pp. 1–5, (2014). https://doi.org/10.1109/CISTEM.2014.7076933.

  39. Belkhiri, S., et al.: Improvement of the vibratory analysis by enhancement of accelerometer characteristics. Sens. Lett. 18(1), 39–42 (2020). https://doi.org/10.1166/sl.2020.4185

    Article  Google Scholar 

  40. Reguieg, S.K. et al: “Extraction of the relative sensitivity model and improvement of the piezoelectric accelerometer performances. In: International Conference on Signal, Image, Vision and their Applications (SIVA), Geulma, Algeria, pp. 1–5, (2018), https://doi.org/10.1109/SIVA.2018.8661159.

  41. Ghemari, Z.: Study and analysis of the piezoresistive accelerometer stability and improvement of their performances’. Intern. J. Syst. Assur. Eng. Manag. 8(2), 1520–1526 (2017). https://doi.org/10.1007/s13198-017-0622-8

    Article  Google Scholar 

  42. Ghemari, Z., Belkhiri, S.: Mechanical resonator sensor characteristics development for precise vibratory analysis. Sens. Imaging 22(1), 40 (2021). https://doi.org/10.1007/s11220-021-00361-3

    Article  ADS  Google Scholar 

  43. Ghemari, Z., Saad, S.: Development of measurement precision of sensor vibration’. J. Vib. Control 19(10), 1480–1486 (2013). https://doi.org/10.1177/1077546312445595

    Article  Google Scholar 

  44. Ghemari, Z.: Progression of the vibratory analysis technique by improving the piezoelectric sensor measurement accuracy’. Microw. Optic. Technol. Lett. 60(12), 2972–2977 (2028). https://doi.org/10.1002/mop.31436

    Article  Google Scholar 

  45. Defdaf, M., et al.: Improvement of method queues by progress of the piezoresistive accelerometer parameters’. J. Adv. Manuf. Syst. 16(03), 227–235 (2017). https://doi.org/10.1142/S0219686717500147

    Article  Google Scholar 

  46. Lebrun, A.: Modélisation et conception d’un capteur de vibrations à fiber optique par analyze par analyze polarimétrie : application à la sismologie Thèse de doctorat, Institut d’électronique du solide et des systèmes, université de Strasbourg, France, (2011)

  47. Almaghbash, Z.A.A.R., Arbouche, O., Dahani, A., et al.: Significant improvement in the piezoelectric properties and electromechanical coupling factors of wurtzite AlN compound under high pressures. J. Comput. Electron. 20, 2420–2430 (2021). https://doi.org/10.1007/s10825-021-01767-8

    Article  CAS  Google Scholar 

  48. Harzellaoui, A., Arbouche, O., Amara, K.: Prediction of the structural, electronic, and piezoelectric properties of narrow-bandgap compounds FeVX (X = P, As, Sb). J. Comput. Electron. 19, 1365–1372 (2020). https://doi.org/10.1007/s10825-020-01543-0

    Article  CAS  Google Scholar 

  49. Chen, B., Li, H., Tian, W., et al.: PZT based piezoelectric sensor for structural monitoring. J. Electron. Mater. 48, 2916–2923 (2019). https://doi.org/10.1007/s11664-019-07034-8

    Article  CAS  ADS  Google Scholar 

  50. Menuzzi, O., Fonseca, J.S.O., Perondi, E.A., et al.: Piezoelectric sensor location by the observability Gramian maximization using topology optimization. Comp. Appl. Math. 37(Suppl 1), 237–252 (2018). https://doi.org/10.1007/s40314-017-0517-y

    Article  MathSciNet  Google Scholar 

  51. Vishnampet, D.S., Yenuganti, S., Paliwal, S., et al.: Design and simulation of a resonance-based MEMS viscosity sensor. J. Comput. Electron. (2023). https://doi.org/10.1007/s10825-023-02114-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Algerian General Direction of Research (DGRSDT) for their financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ZG and SB wrote the main manuscript text and SS prepared figures 1–4. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zine Ghemari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghemari, Z., Belkhiri, S. & Saad, S. A piezoelectric sensor with high accuracy and reduced measurement error. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02134-z

Keywords

Navigation