Skip to main content
Log in

Novel analytical STFT expressions for nonlinear power engineering problem solving

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Special tran function theory (STFT) is a powerful nonlinear problem-solving tool. In this paper, four different nonlinear power engineering problems in the field of induction machines, power inductors, perovskite solar cells, and supercapacitors are represented via the same transcendental equation. Furthermore, the analytical solution of the derived transcendental equation is expressed by using the STFT. Comparisons of the accuracy of the presented solutions with corresponding solutions determined with numerical calculation for all observed power engineering problems are also presented. It is shown that the proposed analytical solution is applicable, simple to implement, highly accurate and low-time consuming. Furthermore, in the mathematical sense, the structures of the final expressions for all observed variables in all observed problems are simpler than literature-known analytical solutions. The Mathematica codes for different STFT solutions are given as an appendix of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Li, Y., Wei, Y., Chu, Y.: Research on solving systems of nonlinear equations based on improved PSO. Math. Problems Eng. (2015). https://doi.org/10.1155/2015/727218

    Article  Google Scholar 

  2. Lipo, T.A.: Analysis of Synchronous Machines, CRC Press, (2017).

  3. Krzeminski, Z., Abu-Rub, H.: Nonlinear Control of Electrical Machines Using Nonlinear Feedback in High Performance Control of AC Drives with MATLAB®/Simulink, John Wiley & Sons Ltd., Second Edition, (2021), https://doi.org/10.1002/9781119591313.ch6

  4. Calasan, M., Zobaa, A., Hasanien, H., Allem, S.H.E., Ali, Z.: An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function. Energy 264, 126165 (2023)

    Article  CAS  Google Scholar 

  5. Rawa, M., Calasan, M., Abusorrah, A., Alhussainy, A.A., Al-Turki, Y., Ali, Z.M., Sindi, H., Mekhilef, S., Aleem, S.H.E.A., Bassi, H.: Single diode solar cells—improved model and exact current-voltage analytical solution based on lambert’s W function. Sensors 22, 4173 (2022). https://doi.org/10.3390/s22114173

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Calasan, M., Zobaas, A.F., Hasanien, H.M., Abdel Aleem, S.H.E., Ali, Z.M.: Toward accurate calculation of supercapacitor electrical variables in constant power applications using new analytical closed-form expressions. J. Energy Storage 42, 102998 (2021). https://doi.org/10.1016/j.est.2021.102998

    Article  Google Scholar 

  7. Rowlands, G.: Non-Linear Phenomena in Science and Engineering (Ellis Horwood Series in Physics and Its Applications) Ellis Horwood Ltd. (1994)

  8. Boyd, J.: Solving Transcendental Equations: The Chebyshev Polynomial Proxy and Other Numerical Rootfinders, Perturbation Series, and Oracles, Society for Industrial and Applied Mathematics, Illustrated edition (2014)

  9. Corless, R.M., et al.: On the lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  Google Scholar 

  10. Perovich, S.M.: Transcendental method in the nonlinear circuits theory Electron. Lett. 32(16), 1433–1437 (1996)

    Google Scholar 

  11. Perovich, S.M., Bauk, S.I.: An inverse problem of temperature estimation for the combination of the linear and nonlinear resistances, Adv. Phys. 2158-3226 (2011)

  12. Aslam, M., Waseem, N.M.: Some iterative methods for solving a system of nonlinear equations. Comput. Math. Appl. 57(1), 101–106 (2009). https://doi.org/10.1016/j.camwa.2008.10.067

    Article  MathSciNet  Google Scholar 

  13. Torregrosa, J.R., Cordero, A., Soleymani, F.: Iterative Methods for Solving Nonlinear Equations and Systems, MDPI, St. Alban-Anlage 66, 4052 Basel, Switzerland, (2019).

  14. Veberic, D.: Lambert W function for applications in physics. Comput. Phys. Commun. 183(12), 2622–2628 (2012). https://doi.org/10.1016/j.cpc.2012.07.008

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Ćalasan, M., Al-Dhaifallah, M., Ali, Z.M., Abdel Aleem, S.H.E.: Comparative analysis of different iterative methods for solving current-voltage characteristics of double and triple diode models of solar cells. Mathematics 10, 3082 (2020). https://doi.org/10.3390/math10173082

    Article  Google Scholar 

  16. Mungkasi, S., Sihotang, J.: A modified Newton’s method used to solve a steady flow problem based on the shallow water equations. AIP Conf. Proc. 1788, 030006 (2017). https://doi.org/10.1063/1.4968259

    Article  Google Scholar 

  17. Calasan, M., Abdel Aleem, S.H.E., Zobaa, A.F.: A new approach for parameters estimation of double and triple diode models of photovoltaic cells based on iterative Lambert W function. Sol. Energy 218, 392–412 (2021). https://doi.org/10.1016/j.solener.2021.02.038

    Article  ADS  Google Scholar 

  18. Perovich, S.M., Djukanovic, M.D., Dlabac, T., Nikolic, D., Calasan, M.P.: Concerning a novel mathematical approach to the solar cell junction ideality factor estimation. Appl. Math. Modell. 39(12), 3248–3264 (2015)

    Article  Google Scholar 

  19. Ćalasan, M.P.: Analytical solution for no-load induction machine speed calculation during direct start-up. Int. Trans. Elect. Energy Syst. 29(4), e2777 (2019)

    Article  Google Scholar 

  20. Perovich, S.M.: The transcendental method in the theory of neutron slowing down. J. Phys. A Math. Gen. 25, 2969–2988 (1992). https://doi.org/10.1088/0305-4470/25/10/024

    Article  ADS  MathSciNet  CAS  Google Scholar 

  21. Perovich, S.M., Orlandic, M., Calasan, M.: Concerning exact analytical STFT solutions to some families of inverse problems in engineering material theory. Appl. Math. Modell. 37(7), 5474–5497 (2013)

    Article  MathSciNet  Google Scholar 

  22. Pindado, S., et al.: Simplified lambert W-function math equations when applied to photovoltaic systems modeling. IEEE Trans. Ind. Appl. 57(2), 1779–1788 (2021)

    Article  Google Scholar 

  23. Perovich, S.M., Calasan, M., Toskovic, R.: On the exact analytical solution of some families of equilibrium critical thickness transcendental equations. AIP Adv. 4(11), 117124–1171132 (2014). https://doi.org/10.1063/1.4902161

    Article  ADS  Google Scholar 

  24. Perovich, S.M., Kovač, N.: On the exact analytical formula for dimensionless injection rate in CO2 storage based on special trans functions theory. Sādhanā. 47(4), 274 (2022). https://doi.org/10.1007/s12046-022-02034-7

    Article  CAS  Google Scholar 

  25. Aree, P.: Precise analytical formula for starting time calculation of medium- and high-voltage induction motors under conventional starter methods. Elect. Eng. Archiv. Fur. Electron. 100(2), 1195–1203 (2018)

    Google Scholar 

  26. Benzaquen, J., Rengifo, J., Albanez, E., et al.: Parameter estimation for deep-bar induction machines using instantaneous stator measurements from a direct startup. IEEE Trans. Energy Conv. 32(2), 516–524 (2017)

    Article  ADS  Google Scholar 

  27. Nedic, A.B., Lazarevic, Z.M., Simovic, V.M., Milic, S.D.: Implementation of minimization techniques to construction optimization of iron-core inductor. IET Elect. Power Appl. 10(1), 9–17 (2016). https://doi.org/10.1049/iet-epa.2014.0446

    Article  Google Scholar 

  28. Calasan, M., Nedic, A.: Experimental testing and analytical solution by means of lambert W-function of inductor air gap length. Elect. Power Compon. Syst. 46(7), 852–862 (2018). https://doi.org/10.1080/15325008.2018.1488012

    Article  Google Scholar 

  29. Singh, N.S., Kumar, L., Sharma, V.K.: Solving the equivalent circuit of a planar heterojunction perovskite solar cell using Lambert W-function. Solid State Commun. (2021). https://doi.org/10.1016/j.ssc.2021.114439114439

    Article  Google Scholar 

  30. Green, M., Dunlop, E., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X.: Solar cell efficiency tables (version 57). Prog. Photovoltaics Res. Appl. 29, 3–15 (2021). https://doi.org/10.1002/pip.3371

    Article  Google Scholar 

  31. Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134

    Article  ADS  CAS  Google Scholar 

  32. Rawa, M., Al-Turki, Y., Sindi, H., Ćalasan, M., Ali, Z.M., Aleem, S.H.: Current-voltage curves of planar heterojunction perovskite solar cells–Novel expressions based on lambert W function and special Trans function theory. J. Adv. Res. 1(44), 91–108 (2023). https://doi.org/10.1016/j.jare.2022.03.017

    Article  CAS  Google Scholar 

  33. Pedrayes, J.F., Melero, M.G., Cano, J.M., Norniella, J.G., Duque, S.B., Rojas, C.H., Orcajo, G.A.: Lambert W function based closed-form expressions of supercapacitor electrical variables in constant power applications. Energy 218, 119364 (2021). https://doi.org/10.1016/j.energy.2020.119364

    Article  Google Scholar 

  34. Khan, F., Rezgui, B.D., Kim, J.H.: Analysis of PV cell parameters of solution processed Cu-doped nickel oxide hole transporting layer-based organic-inorganic perovskite solar cells. Sol. Energy 209, 226–234 (2020). https://doi.org/10.1016/j.solener.2020.09.007

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MC wrote the main manuscript and prepared figures and tables.

Corresponding author

Correspondence to Martin Ćalasan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A. Mathematica code for induction machine speed calculation during direct start-up.

figure a

B. Mathematica code for power inductor air gap length calculation.

figure b

C. Mathematica code for PSC current calculation.

figure c

D. Mathematica code for supercapacitor voltage calculation during constant power charge.

figure d

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ćalasan, M. Novel analytical STFT expressions for nonlinear power engineering problem solving. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02132-1

Keywords

Navigation