Skip to main content
Log in

Oscillations of transverse magnetoresistance in the conduction band of quantum wells at different temperatures and magnetic fields

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work, the influence of two-dimensional state density on oscillations of transverse electrical conductivity in heterostructures with rectangular quantum wells is investigated. A new analytical expression is derived for calculating the temperature dependence of the transverse electrical conductivity oscillation and the magnetoresistance of a quantum well. For the first time, a mechanism is developed for oscillating the transverse electrical conductivity and magnetoresistance of a quantum well from the first-order derivative of the magnetic field (differential) \(\frac{{\partial \left( {\rho_{ \bot }^{2d} (E,B,T,d)} \right)}}{\partial B}\) at low temperatures and weak magnetic fields. The oscillations of electrical conductivity and magnetoresistance of a narrow-band quantum well with a non-parabolic dispersion law are investigated. The proposed theory investigates the results of experiments of a narrow-band quantum well (InxGa1−xSb). The experiment shows that the oscillations of the transverse magnetoresistance of the InxGa1−xSb quantum filament, measured at a temperature of 2 K, transform into a continuous energy spectrum due to thermal washing under the influence of the temperature growth dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data publicly available in a repository: The dataset on effective masses of free electrons and holes are available at https://doi.org/10.1016/j.phpro.2015.09.087 and https://doi.org/10.1063/1.4867086. The dataset on the number of occupied zones, spin degeneration, quantum relaxation time and other kinetic parameters is available at https://doi.org/10.1063/1.4770520. The dataset on semiclassical theory of magnetoresistance oscillation are available at https://doi.org/10.1088/0953-8984/27/43/435007 and https://doi.org/10.1088/1742-6596/456/1/012004. The dataset on various experimental results on determining the temperature dependence of Shubnikov–de Haas oscillations in heterostructures with quantum wells are available at https://doi.org/10.1088/0022-3727/48/30/305108, https://doi.org/10.1186/1556-276X-9-141, https://doi.org/10.1016/j.sse.2011.04.005, https://doi.org/10.1134/S1063782615020165, https://doi.org/10.1002/adfm.202004450, https://doi.org/10.1002/adma.202007862, https://doi.org/10.1103/PhysRevB.103.205305, https://doi.org/10.21883/FTT.2021.12.51654.33 s, https://doi.org/10.1142/S0217979214500015 and https://doi.org/10.1063/1.3536348. The dataset on two-dimensional density of energy states in the conduction band of a quantum wells is available at https://doi.org/10.1002/pssb.201349251. The dataset on electrical conductivity of electrons or holes in nanoscale semiconductor structures is available at https://doi.org/10.1070/PU1969v011n05ABEH003739. The dataset on energy and temperature dependence of the relaxation time is available at https://archive.org/details/anselm-introduction-to-semiconductor-theory-mir. The dataset on energy of charge carriers in the conduction band is available at https://doi.org/10.1155/2016/5434717.

References

  1. Yuzeeva, N.A., Galiev, G.B., Klimova, E.A., Oveshnikov, L.N., Lunin, R.A., Kulbachinskii, V.A.: Experimental determination of the subband electron effective mass in InGaAs/InAlAs HEMT-structures by the Shubnikov-de Haas effect at two temperatures. Phys. Proc. 72, 425–430 (2015). https://doi.org/10.1016/j.phpro.2015.09.087

    Article  Google Scholar 

  2. Tarquini, V., Knighton, T., Wu, Zh., Huang, J., Pfeiffer, L., West, K.: Degeneracy and effective mass in the valence band of two-dimensional (100)-GaAs quantum well systems. Appl. Phys. Lett. 104(9), 092102 (2014). https://doi.org/10.1063/1.4867086

    Article  Google Scholar 

  3. Berkutov, I.B., Andrievskii, V.V., Komnik, Yu.F., Kolesnichenko, Yu.A., Morris, R.J.H., Leadley, D.R.: Magnetotransport studies of SiGe-based p-type heterostructures: problems with the determination of effective mass. Low Temp. Phys. 38(12), 1145–1452 (2012). https://doi.org/10.1063/1.4770520

    Article  Google Scholar 

  4. Yar, A., Sabeeh, K.: Radiation-assisted magnetotransport in two-dimensional electron gas systems: appearance of zero resistance states. J. Phys. Condens. Matter. 27(43), 435007 (2015). https://doi.org/10.1088/0953-8984/27/43/435007

    Article  Google Scholar 

  5. Bogan, A., Hatke, A.T., Studenikin, S.A., Sachrajda, A., Zudov, M.A., Pfeiffer, L.N., West, K.W.: Effect of an in-plane magnetic field on microwave photoresistance and Shubnikov-de Haas effect in high-mobility GaAs/AlGaAs quantum wells. J. Phys. Conf. Ser. 456, 012004 (2013). https://doi.org/10.1088/1742-6596/456/1/012004

    Article  Google Scholar 

  6. Dönmez, Ö., Sarcan, F., Erol, A., Gunes, M., Arikan, M.Ç., Puustinen, J., Guina, M.: Magnetotransport study on as-grown and annealed n- and p-type modulation-doped GaInNAs/GaAs strained quantum well structures. Nanoscale Res. Lett. 9, 141 (2014). https://doi.org/10.1186/1556-276X-9-141

    Article  Google Scholar 

  7. Nainani, A., Irisawa, T., Bennett, B.R., Boos, J.B., Ancona, M.G., Saraswat, K.C.: Study of Shubnikov–de Haas oscillations and measurement of hole effective mass in compressively strained InXGa1−XSb quantum wells. Solid-State Electron. 62(1), 138–141 (2011). https://doi.org/10.1016/j.sse.2011.04.005

    Article  Google Scholar 

  8. Sarcan, F., Nutku, F., Donmez, O., Kuruoglu, F., Mutlu, S., Erol, A., Yildirim, S., Arikan, M.C.: Quantum oscillations and interference effects in strained n- and p-type modulation doped GaInNAs/GaAs quantum wells. J. Phys. D Appl. Phys. 48(30), 305108 (2015). https://doi.org/10.1088/0022-3727/48/30/305108

    Article  Google Scholar 

  9. Kulbachinskii, V.A., Oveshnikov, L.N., Lunin, R.A., Yuzeeva, N.A., Galiev, G.B., Klimov, E.A., Maltsev, P.P.: Experimental determination of the electron effective masses and mobilities in each dimensionally quantized subband in an InxGa1-xAs quantum well with InAs inserts. Semiconductors 49(2), 204–213 (2015). https://doi.org/10.1134/S1063782615020165

    Article  Google Scholar 

  10. Gulyamov, G., Erkaboev, U.I., Rakhimov, R.G., Mirzaev, J.I.: On temperature dependence of longitudinal electrical conductivity oscillations in narrow-gap electronic semiconductors. J. Nano- Electron. Phys. 12(3), 03012 (2020). https://doi.org/10.1142/S0217979220500526

    Article  Google Scholar 

  11. Erkaboev, U.I., Gulyamov, G., Mirzaev, J.I., Rakhimov, R.G.: Modeling on the temperature dependence of the magnetic susceptibility and electrical conductivity oscillations in narrow-gap semiconductors. Int. J. Mod. Phys. B 34(7), 2050052 (2020). https://doi.org/10.1142/S0217979220500526

    Article  MathSciNet  Google Scholar 

  12. Yang, L., Wang, X., Wang, T., Wang, J., Zhang, W., Quach, P., Wang, P., Liu, F., Li, D., Chen, L., Liu, Sh., Wei, J., Yang, X., Xu, F., Tang, N., Tan, W., Zhang, J., Ge, W., Wu, X., Zhang, Ch., Shen, B.: Three subband occupation of the two-dimensional electron gas in ultrathin barrier AlN/GaN heterostructures. Adv. Func. Mater. 30(46), 2004450 (2020). https://doi.org/10.1002/adfm.202004450

    Article  Google Scholar 

  13. Gulyamov, G., Erkaboev, U.I., Sayidov, N.A., Rakhimov, R.G.: The influence of temperature on magnetic quantum effects in semiconductor structures. J. Appl. Sci. Eng. 23(3), 453–460 (2020). https://doi.org/10.6180/jase.202009_23(3).0009

    Article  Google Scholar 

  14. Tai, Ch.T., Chiu, P.Y., Liu, Ch.Y., Kao, HSh., Harris, CTh., Lu, T.M., Hsieh, Ch.T., Chang, Sh.W., Li, J.Y.: Strain effects on Rashba spin-orbit coupling of 2D hole gases in GeSn/Ge heterostructures. Adv. Mater. 33(26), 2007862 (2021). https://doi.org/10.1002/adma.202007862

    Article  Google Scholar 

  15. Pena, F.S., Wiedmann, S., Abramof, E., Soares, D.A.W., Rappl, P.H.O., Castro, S., Peres, M.L.: Quantum Hall effect and Shubnikov–de Haas oscillations in a high-mobility p-type PbTe quantum well. Phys. Rev. B 103(20), 205305 (2021). https://doi.org/10.1103/PhysRevB.103.205305

    Article  Google Scholar 

  16. Erkaboev, U.I., Gulyamov, G., Mirzaev, J.I., Rakhimov, R.G., Sayidov, N.A.: Calculation of the Fermi-Dirac function distribution in two-dimensional semiconductor materials at high temperatures and weak magnetic fields. Nano 16(9), 2150102 (2021). https://doi.org/10.1142/S0217984921502936

    Article  Google Scholar 

  17. Erkaboev, U.I., Rakhimov, R.G., Sayidov, N.A.: Mathematical modeling determination coefficient of magneto-optical absorption in semiconductors in presence of external pressure and temperature. Mod. Phys. Lett. B 35(17), 2150293 (2021). https://doi.org/10.1142/S0217984921502936

    Article  MathSciNet  Google Scholar 

  18. Bogolyubsky, A.S., Gudina, S.V., Neverov, V.N., Turutkin, K.V., Podgornykh, S.M., Shelushinina, N.G., Yakunin, M.V., Mikhailov, N.N., Dvoretsky, C.A.: Quantum oscillations of magnetoresistance in HgCdTe/HgTe/HgCdTe heterostructures with an inverted band spectrum. Phys. Solid State 63(12), 1983–1993 (2021). https://doi.org/10.21883/FTT.2021.12.51654.33s

    Article  Google Scholar 

  19. Bau, N.Q., Hoi, B.D.: Investigation of the hall effect in rectangular quantum wells with a perpendicular magnetic field in the presence of a high-frequency electromagnetic wave. Int. J. Mod. Phys. B 28(03), 1450001 (2014). https://doi.org/10.1142/S0217979214500015

    Article  MathSciNet  Google Scholar 

  20. Erkaboev, U.I., Rakhimov, R.G., Sayidov, N.A., Mirzaev, J.I.: Modeling the temperature dependence of the density oscillation of energy states in two-dimensional electronic gases under the impact of a longitudinal and transversal quantum magnetic fields. Indian J. Phys. 96(10), 02435 (2022). https://doi.org/10.1007/s12648-022-02435-8

    Article  Google Scholar 

  21. Erkaboev, U.I., Negmatov, U.M., Rakhimov, R.G., Mirzaev, J.I., Sayidov, N.A.: Influence of a quantizing magnetic field on the fermi energy oscillations in two-dimensional semiconductors. Int. J. Appl. Sci. Eng. 19(2), 2021123 (2022). https://doi.org/10.6703/IJASE.202206_19(2).004

    Article  Google Scholar 

  22. Erkaboev, U.I., Gulyamov, G., Rakhimov, R.G.: A new method for determining the bandgap in semiconductors in presence of external action taking into account lattice vibrations. Indian J. Phys. 96(8), 2359–2368 (2022). https://doi.org/10.1007/s12648-021-02180-4

    Article  Google Scholar 

  23. Berkutov, I.B., Andrievskii, V.V., Komnik, Yu.F., Mironov, O.A.: Positive quasiclassical magnetoresistance and quantum effects in germanium quantum wells. Low Temp. Phys. 36(12), 1076–1085 (2010). https://doi.org/10.1063/1.3536348

    Article  Google Scholar 

  24. Shik, A.Y., Bakueva, L.G., Musikhin, S.F., Rykov, S.A.: Physics of low-dimensional system. Science, Saint Petersburg (2001)

    Google Scholar 

  25. Tavger, B.A., Demikhovskii, V.. Ya..: Quantum size effects in semiconducting and semimetallic films. Sov. Phys. Uspekhi 11(5), 644–658 (1969). https://doi.org/10.1070/PU1969v011n05ABEH003739

    Article  Google Scholar 

  26. Zawadzki, W., Raymond, A., Kubisa, M.: Reservoir model for two-dimensional electron gases in quantizing magnetic fields: a review. Phys. Status Solidi (b) 251(2), 247–262 (2013). https://doi.org/10.1002/pssb.201349251

    Article  Google Scholar 

  27. Anselm, A.I.: Introduction to the theory of semiconductors. Phys. -Uspekhi 85(1), 183–184 (1965)

    Google Scholar 

  28. Shik, A.Y.: Superlattices-periodic semiconductor structures (review). Sov. Phys. Semicond. 8(10), 1195–1209 (1975)

    Google Scholar 

  29. Gulyamov, G., Erkaboev, U.I., Baymatov, P.J.: Determination of the density of energy states in a quantizing magnetic field for model Kane. Adv. Condens. Matter Phys. 2016, 5434717 (2016). https://doi.org/10.1155/2016/5434717

    Article  Google Scholar 

  30. Utochkin, V.V., Fadeev, M.A., Krishtopenko, S.S., Rumyantsev, V.V., Aleshkin, V.. Ya.., Dubinov, A.A., Morozov, S.V., Semyagin, B.R., Putyato, M.A., Emelyanov, E.A., Preobrazhenskii, V.V., Gavrilenko, V.I.: Photoluminescence spectra of InAs/GaInSb/InAs quantum wells in the mid-infrared region. Semiconductors 54(9), 1119–1122 (2020). https://doi.org/10.1134/S1063782620090304

    Article  Google Scholar 

  31. Brudnyi, V.N., Kolin, N.G., Potapov, A.I.: Electrical properties of InAs irradiated with protons. Semiconductors 37(4), 390–395 (2003). https://doi.org/10.1134/1.1568456

    Article  Google Scholar 

  32. Magno, R., Glaser, E.R., Tinkham, B.P., Champlain, J.G., Boos, J.B., Ancona, M.G., Campbell, P.M.: Narrow band gap InGaSb, InAlAsSb alloys for electronic devices. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 24(3), 1622–1625 (2006). https://doi.org/10.1116/1.2201448

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by UE and RR. The first draft of the manuscript was written by UE and both authors commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to R. G. Rakhimov.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erkaboev, U.I., Rakhimov, R.G. Oscillations of transverse magnetoresistance in the conduction band of quantum wells at different temperatures and magnetic fields. J Comput Electron 23, 279–290 (2024). https://doi.org/10.1007/s10825-024-02130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-024-02130-3

Keywords

Navigation