Skip to main content
Log in

Numerical investigation of energy level strategy for TMO/Si tunneling heterojunction solar cells

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A thin film of transition metal oxide (TMO) layer forms a heterojunction configuration with silicon (Si) via dopant-free fabrication process. However, excellent hole selective contact performance of TMO/n-Si heterojunction necessitates a stringent alignment of energy levels. Herein, we studied the level matching strategy of TMO/n-Si heterojunction with four parameters including conduction band (EC), bandgap (Eg), Fermi level (EF) and interface trap concentration (Nt). It is found that the electron affinity (Ea) of TMO determines the relative position of the energy level, and increasing the Ea can increase the open-circuit voltage (VOC) from 426.0 to 742.5 mV. In addition, the energy level bending of the interface can be adjusted by the relative EF position of TMO and n-Si to improve the carrier separation efficiency to increase the short-circuit current density (JSC). Meanwhile, the higher Nt is beneficial to the carrier tunneling transport in the case of EC of TMO being smaller than that of n-Si, which enhances the energy level bending of the interface and improves the solar cells performance. Finally, the MoOx/n-Si heterojunction solar cell is optimized to obtained the power conversion efficiency (PCE) of 21.87%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W.Y.: Solar cell efficiency tables (Version 53). Prog. Photovolt. 27, 3–12 (2019)

    Article  Google Scholar 

  2. Jiang, Q., Chu, Z., Wang, P., Yang, X., Liu, H., Wang, Y., Yin, Z., Wu, J., Zhang, X., You, J.: Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017)

    Article  Google Scholar 

  3. Benick, J., Richter, A., Müller, R., Hauser, H., Feldmann, F., Krenckel, P., Riepe, S., Schindler, F., Schubert, M.C., Hermle, M., Bett, A.W., Glunz, S.W.: High-efficiency n-type HP mc silicon solar cells. IEEE J. Photovolt. 7, 1171–1175 (2017)

    Article  Google Scholar 

  4. Long, W., Yin, S., Peng, F., Yang, M., Fang, L., Ru, X., Qu, M., Lin, H., Xu, X.: On the limiting efficiency for silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 231, 111291 (2021)

    Article  CAS  Google Scholar 

  5. Schmidt, J., Peibst, R., Brendel, R.: Surface passivation of crystalline silicon solar cells: present and future. Sol. Energy Mater. Sol. Cells 187, 39–54 (2018)

    Article  CAS  Google Scholar 

  6. Wang, X., Kurdgelashvili, L., Byrne, J., Barnett, A.: The value of module efficiency in lowering the levelized cost of energy of photovoltaic systems. Renew. Sustain. Energy Rev. 15, 4248–4254 (2011)

    Article  Google Scholar 

  7. Singh, R., Sivakumar, R., Srivastava, S.K., Som, T.: Carrier selective MoOx/Si heterojunctions: role of thickness. Appl. Surf. Sci. 564, 150316 (2021)

    Article  CAS  Google Scholar 

  8. García-Hernansanz, R., García-Hemme, E., Montero, D., Olea, J., Del Prado, A., Martil, I., Voz, C., Gerling, L.G., Puigdollers, J., Alcubilla, R.: Transport mechanisms in silicon heterojunction solar cells with molybdenum oxide as a hole transport layer. Sol. Energy Mater. Sol. Cells 185, 61–65 (2018)

    Article  Google Scholar 

  9. Fang, L., Baik, S.J., Kim, J.W., Kang, S.J., Seo, J.W., Jeon, J.W., Kim, Y.H., Lim, K.S.: Tunable work function of a WOx buffer layer for enhanced photocarrier collection of pin-type amorphous silicon solar cells. J. Appl. Phys. 109, 104501 (2011)

    Article  ADS  Google Scholar 

  10. Liang, Z., Su, M., Zhou, Y., Gong, L., Zhao, C., Chen, K., Xie, F., Zhang, W., Chen, J., Liu, P., Xie, W.: Interaction at the silicon/transition metal oxide heterojunction interface and its effect on the photovoltaic performance. Phys. Chem. Chem. Phys. 17, 27409–27413 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. Wu, W., Bao, J., Jia, X., Liu, Z., Cai, L., Liu, B., Song, J., Shen, H.: Dopant-free back contact silicon heterojunction solar cells employing transition metal oxide emitters. Phys. Status Solidi RRL 10, 662–667 (2016)

    Article  CAS  Google Scholar 

  12. Köhler, M., Pomaska, M., Procel, P., Santbergen, R., Zamchiy, A., Macco, B., Lambertz, A., Duan, W., Cao, P., Klingebiel, B., Li, S., Eberst, A., Luysberg, M., Qiu, K., Isabella, O., Finger, F., Kirchartz, T., Rau, U., Ding, K.: A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%. Nat. Energy 6, 529–537 (2021)

    Article  ADS  Google Scholar 

  13. Almora, O., Gerling, L.G., Voz, C., Alcubilla, R., Puigdollers, J., Garcia-Belmonte, G.: Superior performance of V2O5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 168, 221–226 (2017)

    Article  CAS  Google Scholar 

  14. Mehmood, H., Nasser, H., Tauqeer, T., Turan, R.: Simulation of silicon heterostructure solar cell featuring dopant-free carrier-selective molybdenum oxide and titanium oxide contacts. Renew. Energy 143, 359–367 (2019)

    Article  CAS  Google Scholar 

  15. Fang, L., Baik, S.J., Lim, K.S.: Transition metal oxide window layer in thin film amorphous silicon solar cells. Thin Solid Films 556, 515–5194 (2014)

    Article  ADS  CAS  Google Scholar 

  16. Ore, E., Amaratunga, G.: Crystalline silicon heterojunction solar cells with metal oxide window layers. In: 2019 IEEE 46th photovoltaic specialists conference (PVSC), pp. 1139–1142 (2019)

  17. Kafle, B., Goraya, B.S., Mack, S., Feldmann, F., Nold, S., Rentsch, J.: TOPCon-technology options for cost efficient industrial manufacturing. Sol. Energy Mater. Sol. Cells 227, 111100 (2021)

    Article  CAS  Google Scholar 

  18. Nasser, H., Es, F., Zolfaghari Borra, M., Semiz, E., Kökbudak, G., Orhan, E., Turan, R.: On the application of hole-selective MoOx as full-area rear contact for industrial scale p-type c-Si solar cells. Prog. Photovolt. 29, 281–293 (2020)

    Article  Google Scholar 

  19. Bhatia, S., Khorakiwala, I.M., Nair, P.R., Antony, A.: Influence of post deposition fabrication steps and quantitative estimation of band diagram of Si/MoOX heterojunction for carrier selective solar cells. Sol. Energy 194, 141–147 (2019)

    Article  ADS  CAS  Google Scholar 

  20. Yang, X., Xu, H., Liu, W., Bi, Q., Xu, L., Kang, J., Hedhili, M.N., Sun, B., Zhang, X., De Wolf, S.: Atomic layer deposition of vanadium oxide as hole-selective contact for crystalline silicon solar cells. Adv. Electron. Mater. 6, 2000467 (2020)

    Article  CAS  Google Scholar 

  21. Kim, S.H., Jung, J.Y., Wehrspohn, R.B., Lee, J.H.: All-room-temperature processed 17.25%-crystalline silicon solar cell. ACS Appl. Energy Mater. 3, 3180–3185 (2020)

    Article  CAS  Google Scholar 

  22. Liu, Y., Zhang, J., Wu, H., Cui, W., Wang, R., Ding, K., Lee, S.T., Sun, B.: Low-temperature synthesis TiOx passivation layer for organic-silicon heterojunction solar cell with a high open-circuit voltage. Nano Energy 34, 257–263 (2017)

    Article  ADS  CAS  Google Scholar 

  23. Matsui, T., Bivour, M., Ndione, P.F., Bonilla, R.S., Hermle, M.: Origin of the tunable carrier selectivity of atomic-layer-deposited TiOx nanolayers in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 209, 110461 (2020)

    Article  CAS  Google Scholar 

  24. Chen, L., Gao, Z., Zheng, Y., Cui, M., Yan, H., Wei, D., Dou, S., Ji, J., Jia, E., Sang, N., Liu, K., Ding, X., Li, Y., Li, M.: 14.1% efficiency hybrid planar-Si/organic heterojunction solar cells with SnO2 insertion layer. Sol. Energy 174, 549–555 (2018)

    Article  ADS  CAS  Google Scholar 

  25. Xue, M., Nazif, K.N., Lyu, Z., Jiang, J., Lu, C.Y., Lee, N., Zang, K., Chen, Y., Zheng, T., Kamins, T.I., Brongersma, M.L., Saraswat, K.C., Harris, J.S.: Free-standing 2.7 μm thick ultrathin crystalline silicon solar cell with efficiency above 12.0%. Nano Energy 70, 104466 (2020)

    Article  CAS  Google Scholar 

  26. Mallem, K., Kim, Y.J., Hussain, S.Q., Dutta, S., Le, A.H., Ju, M., Park, J., Cho, Y.H., Kim, Y., Cho, E.C., Yi, J.: Molybdenum oxide: a superior hole extraction layer for replacing p-type hydrogenated amorphous silicon with high efficiency heterojunction Si solar cells. Mater. Res. Bull. 110, 90–96 (2019)

    Article  CAS  Google Scholar 

  27. Lu, C., Prakoso, A.B., Wang, H.: Hole selective WOx and V2Ox contacts using solution process for silicon solar cells application. Mater. Chem. Phys. 273, 125101 (2021)

    Article  CAS  Google Scholar 

  28. Mehmood, H., Nasser, H., Zaidi, S.M., Tauqeer, T., Turan, R.: Physical device simulation of dopant-free asymmetric silicon heterojunction solar cell featuring tungsten oxide as a hole-selective layer with ultrathin silicon oxide passivation layer. Renew. Energy 183, 188–201 (2022)

    Article  CAS  Google Scholar 

  29. Gao, Z., Gao, T., Geng, Q., Lin, G., Li, Y., Chen, L., Li, M.: Improving light absorption of active layer by adjusting PEDOT:PSS film for high efficiency Si-based hybrid solar cells. Sol. Energy 228, 299–307 (2021)

    Article  ADS  CAS  Google Scholar 

  30. Gao, T., Geng, Q., Gao, Z., Li, Y., Chen, L., Li, M.: Improving junction quality via modifying the Si surface to enhance the performance of PEDOT:PSS/Si hybrid solar cells. ACS Appl. Energy Mater. 4, 12543–12551 (2021)

    Article  CAS  Google Scholar 

  31. Shang, A., Li, X.: Photovoltaic devices: opto-electro-thermal physics and modeling. Adv. Mater. 29, 1603492 (2016)

    Article  Google Scholar 

  32. Li, X., Hylton, N.P., Giannini, V., Lee, K.H., Ekins-Daukes, N.J., Maier, S.A.: Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations. Prog. Photovolt. 21, 109–120 (2012)

    Article  CAS  Google Scholar 

  33. Gao, Z., Lin, G., Chen, Y., Zheng, Y., Sang, N., Li, Y., Chen, L., Li, M.: Moth-eye nanostructure PDMS films for reducing reflection and retaining flexibility in ultra-thin c-Si solar cells. Sol. Energy 205, 275–281 (2020)

    Article  ADS  CAS  Google Scholar 

  34. Polyanskiy; Refractive index database (2023). https://refractiveindex.info. Accessed 15 Apr 2023

  35. Mehmood, H., Nasser, H., Tauqeer, T., Turan, R.: Numerical analysis of dopant-free asymmetric silicon heterostructure solar cell with SiO2 as passivation layer. Int. J. Energy Res. 44, 10739–10753 (2020)

    Article  CAS  Google Scholar 

  36. Mehmood, H., Nasser, H., Tauqeer, T., Hussain, S., Ozkol, E., Turan, R.: Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier-selective contact. Int. J. Energy Res. 42, 1563–1579 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the reviewers for the valuable suggestion.

Funding

This work was supported by the National Natural Science Foundation of China (Grant nos. 62304125 and 62101310) and the Youth Innovation Team Development Plan of Colleges and Universities in Shandong Province (2022KJ323 and 2023KJ148).

Author information

Authors and Affiliations

Authors

Contributions

ZG contributed design, modeling and calculation in this manuscript, and GF, HZ and LD contributed discussion and writing in this manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhongliang Gao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethics approval

We confirm the ethic approval.

Consent to participate

All of authors and contributors have consent for this article.

Consent for publication

All of authors and contributors have consent to publish in this journal.

Human and animal rights and informed consent

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 236 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Feng, G., Zhou, H. et al. Numerical investigation of energy level strategy for TMO/Si tunneling heterojunction solar cells. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02128-x

Keywords

Navigation