Skip to main content
Log in

Small-signal non-quasi-static model of a multi-fin FinFET for analog and linearity analysis: the role of gate resistance

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Non-quasi-static small-signal models are essential for exploring the high-frequency (HF) behavior of the FinFET. In this paper, we propose a modified small-signal model for a multi-fin (MF) FinFET to extract the intrinsic and extrinsic parameters using Y-parameters extracted from TCAD. The gate resistance plays a significant role in optimizing the HF behavior with the varying numbers of fins in the MF configuration. We also test the model’s accuracy with increasing temperature up to 425 K. Using well-calibrated TCAD models, we further analyze the analog and linearity figures of merit, including cutoff frequency (f\(_{T}\)), the maximum frequency of oscillation (f\(_\textrm{max}\)), transconductance (g\(_{m}\)) and higher-order derivatives such as g\(_{m2}\), g\(_{m3}\), VIP\(_2\), and VIP\(_3\). Thus, the behavior of intrinsic and extrinsic parasitic resistance and capacitance is worth exploring to determine the device operation in the frequency range of >100 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Lee, J., Han, S., Lee, J., Kang, B., Bae, J., Jang, J., Oh, S., Chang, J.-S., Kang, S., Son, K.Y., et al.: A sub-6-ghz 5g new radio rf transceiver supporting en-dc with 3.15-gb/s dl and 1.27-gb/s ul in 14-nm finfet cmos. IEEE J. Solid-State Circuits 54(12), 3541–3552 (2019)

    Article  ADS  Google Scholar 

  2. Doris, K., Jansen, F., Lont, M., Dinh, T.V., Syed, W., Carluccio, G., Tiemeijer, L.F., Saric, T., Zong, Z., Osorio, J., Janssen, E., Thuries, S., Ganzerli, M., Filippi, A., Graauw, A.d., Salle, D., Vaucher, C.S.: Mm-wave automotive radar: from evolution to revolution. In: 2021 IEEE International Electron Devices Meeting (IEDM), pp. 25–712574 (2021). https://doi.org/10.1109/IEDM19574.2021.9720646

  3. Subramanian, V., Parvais, B., Borremans, J., Mercha, A., Linten, D., Wambacq, P., Loo, J., Dehan, M., Gustin, C., Collaert, N., et al.: Planar bulk mosfets versus finfets: an analog/rf perspective. IEEE Trans. Electron Devices 53(12), 3071–3079 (2006)

    Article  ADS  Google Scholar 

  4. Chaudhry, A., Kumar, M.J.: Controlling short-channel effects in deep-submicron soi mosfets for improved reliability: a review. IEEE Trans. Device Mater. Reliab. 4(1), 99–109 (2004). https://doi.org/10.1109/TDMR.2004.824359

    Article  Google Scholar 

  5. Kang, I.M., Shin, H.: Non-quasi-static small-signal modeling and analytical parameter extraction of soi finfets. IEEE Trans. Nanotechnol. 5(3), 205–210 (2006). https://doi.org/10.1109/TNANO.2006.869946

    Article  ADS  Google Scholar 

  6. Jadhav, A., Ozawa, T., Baratov, A., Asubar, J.T., Kuzuhara, M., Wakejima, A., Yamashita, S., Deki, M., Nitta, S., Honda, Y., Amano, H., Roy, S., Sarkar, B.: Modified small signal circuit of algan/gan mos-hemts using rational functions. IEEE Trans. Electron Devices 68(12), 6059–6064 (2021). https://doi.org/10.1109/TED.2021.3119528

    Article  ADS  CAS  Google Scholar 

  7. Lee, H.-J., Rami, S., Ravikumar, S., Neeli, V., Phoa, K., Sell, B., Zhang, Y.: Intel 22nm finfet (22ffl) process technology for rf and mm wave applications and circuit design optimization for finfet technology. In: 2018 IEEE International Electron Devices Meeting (IEDM), pp. 14–111414 (2018). https://doi.org/10.1109/IEDM.2018.8614490

  8. Yeh, W.-K., Zhang, W., Chen, P.-Y., Yang, Y.-L.: The impact of fin number on device performance and reliability for multi-fin tri-gate n- and p-type finfet. IEEE Trans. Device Mater. Reliab. 18(4), 555–560 (2018). https://doi.org/10.1109/TDMR.2018.2866800

    Article  CAS  Google Scholar 

  9. Khandelwal, S., Duarte, J.P., Medury, A., Chauhan, Y.S., Hu, C.: New industry standard finfet compact model for future technology nodes. In: 2015 Symposium on VLSI Technology (VLSI Technology), pp. 62–63 (2015). https://doi.org/10.1109/VLSIT.2015.7223704

  10. Zhang, W., Yin, S., Hu, W., Wang, Y.: Novel physics-based small-signal modeling and characterization for advanced rf bulk finfets. IEEE Trans. Electron Devices 68(5), 2160–2166 (2021). https://doi.org/10.1109/TED.2021.3063211

    Article  ADS  Google Scholar 

  11. Sentaurus TCAD (Ver. 2019.09) Manuals,Synopsys, Inc., Mountain View, CA, USA

  12. Natarajan, S., Agostinelli, M., Akbar, S., Bost, M., Bowonder, A., Chikarmane, V., Chouksey, S., Dasgupta, A., Fischer, K., Fu, Q., Ghani, T., Giles, M., Govindaraju, S., Grover, R., Han, W., Hanken, D., Haralson, E., Haran, M., Heckscher, M., Heussner, R., Jain, P., James, R., Jhaveri, R., Jin, I., Kam, H., Karl, E., Kenyon, C., Liu, M., Luo, Y., Mehandru, R., Morarka, S., Neiberg, L., Packan, P., Paliwal, A., Parker, C., Patel, P., Patel, R., Pelto, C., Pipes, L., Plekhanov, P., Prince, M., Rajamani, S., Sandford, J., Sell, B., Sivakumar, S., Smith, P., Song, B., Tone, K., Troeger, T., Wiedemer, J., Yang, M., Zhang, K.: A 14nm logic technology featuring 2nd-generation finfet, air-gapped interconnects, self-aligned double patterning and a 0.0588 \(\mu\)m2 sram cell size. In: 2014 IEEE International Electron Devices Meeting, pp. 3–71373 (2014). https://doi.org/10.1109/IEDM.2014.7046976

  13. Singh, J., Ciavatti, J., Sundaram, K., Wong, J.S., Bandyopadhyay, A., Zhang, X., Li, S., Bellaouar, A., Watts, J., Lee, J.G., Samavedam, S.B.: 14-nm finfet technology for analog and rf applications. IEEE Trans. Electron Devices 65(1), 31–37 (2018). https://doi.org/10.1109/TED.2017.2776838

    Article  ADS  CAS  Google Scholar 

  14. Lovelace, D., Costa, J., Camilleri, N.: Extracting small-signal model parameters of silicon mosfet transistors. In: 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4), pp. 865–8682 (1994). https://doi.org/10.1109/MWSYM.1994.335220

  15. Torres-Torres, R., Murphy-Arteaga, R., Decoutere, S.: Mosfet bias dependent series resistance extraction from rf measurements. Electron. Lett. 39(20), 1476–1478 (2003)

    Article  ADS  Google Scholar 

  16. Crupi, G., Schreurs, D.M.M.-P., Raffo, A., Caddemi, A., Vannini, G.: A new millimeter-wave small-signal modeling approach for phemts accounting for the output conductance time delay. IEEE Trans. Microw. Theory Tech. 56(4), 741–746 (2008). https://doi.org/10.1109/TMTT.2008.918147

    Article  ADS  Google Scholar 

  17. Ghosh, P., Haldar, S., Gupta, R.S., Gupta, M.: An investigation of linearity performance and intermodulation distortion of gme cgt mosfet for rfic design. IEEE Trans. Electron Devices 59(12), 3263–3268 (2012). https://doi.org/10.1109/TED.2012.2219537

    Article  ADS  Google Scholar 

  18. Zhang, J., Niu, G., Cai, W., Wang, W., Imura, K.: Intermodulation linearity characteristics of 14-nm rf finfets. IEEE Trans. Electron Devices 66(6), 2520–2526 (2019). https://doi.org/10.1109/TED.2019.2912516

    Article  ADS  CAS  Google Scholar 

  19. Patel, J., Sharma, D., Yadav, S., Lemtur, A., Suman, P.: Performance improvement of nano wire tfet by hetero-dielectric and hetero-material: At device and circuit level. Microelectron. J. 85, 72–82 (2019). https://doi.org/10.1016/j.mejo.2019.02.004

    Article  CAS  Google Scholar 

  20. Jaisawal, R.K., Rathore, S., Kondekar, P.N., Bagga, N.: Analog/rf and linearity performance assessment of a negative capacitance finfet using high threshold voltage techniques. IEEE Trans. Nanotechnol. 22, 545–551 (2023). https://doi.org/10.1109/TNANO.2023.3308814

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navjeet Bagga.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, J., Aggarwal, N., Bagga, N. et al. Small-signal non-quasi-static model of a multi-fin FinFET for analog and linearity analysis: the role of gate resistance. J Comput Electron (2024). https://doi.org/10.1007/s10825-023-02127-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-023-02127-4

Keywords

Navigation