Skip to main content
Log in

Low-frequency noise performance of a molybdenum ditelluride double-gate MOSFET

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This work investigates the low-frequency noise performance of a 2H-type monolayer/bilayer molybdenum ditelluride (MoTe2) double-gate MOSFET. A hybrid simulation technique involving both QuantumWise ATK and Sentaurus TCAD tools has been used to simulate the device characteristics. First, density functional theory (DFT) has been used to simulate the electrical characteristics of monolayer and bilayer 2H–MoTe2. The parameters (bandgap and effective mass, mobility etc.) obtained using the atomistic simulator tool are exported into Sentaurus TCAD to simulate the drain current characteristics. We have used the kinetic velocity model and quantum model to account for the ballistic mobility and quantum effects in the device. The noise simulation for the bilayer MoTe2 is computed using the impedance field method. Noise parameters such as noise power spectral density (SID) as a function of frequency and bias, and noise figure have also been simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data will be provided upon request.

References

  1. Moore, M.: International roadmap for devices and systems (IEEE, 2022). https://irds.ieee.org/images/files/pdf/2022/2022IRDS_MM.pdf. Accessed Dec 2022

  2. Zeng, S., Tang, Z., Liu, C., Zhou, P.: Electronics based on two-dimensional materials: status and outlook. Nano Res. 14(6), 1752 (2021)

    Article  Google Scholar 

  3. Kang, J., Cao, W., Xie, X., Sarkar, D., Liu, W., Banerjee, K.: Graphene and beyond-graphene 2D crystals for next-generation green electronics. Micro Nanotechnol. Sens. Syst. Appl. 6(9083), 20 (2014)

    Google Scholar 

  4. Dathbun, A., Kim, Y., Choi, Y., Sun, J., Kim, S., Kang, B., Cho, J.H.: Selectively metallized 2D materials for simple logic devices. ACS Appl. Mater. Interfaces 11(20), 18571 (2019)

    Article  Google Scholar 

  5. Liu, C., Chen, H., Hou, X., Zhang, H., Han, J., Jiang, Y.G., Zhou, P.: Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14(7), 662 (2019)

    Article  Google Scholar 

  6. Li, J., Liu, L., Chen, X., Liu, C., Wang, J., Hu, W., Zhou, P.: Symmetric ultrafast writing and erasing speeds in quasi-nonvolatile memory via van der Waals heterostructures. Adv. Mater. 31(11), 1808035 (2019)

    Article  Google Scholar 

  7. Das, S., Robinson, J.A., Dubey, M., Terrones, H., Terrones, M.: Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 45, 1–27 (2015)

    Article  Google Scholar 

  8. Ruppert, C., Aslan, B., Heinz, T.F.: Optical properties and band gap of single-and few-layer MoTe2 crystals. Nano Lett. 14(11), 6231 (2014)

    Article  Google Scholar 

  9. Chen, J., Feng, Z., Fan, S., Shi, S., Yue, Y., Shen, W., Zhang, D.: Contact engineering of molybdenum ditelluride field effect transistors through rapid thermal annealing. ACS Appl. Mater. Interfaces 9(35), 30107 (2017)

    Article  Google Scholar 

  10. Fathipour, S., Ma, N., Hwang, W.S., Protasenko, V., Vishwanath, S., Xing, H.G., Seabaugh, A.: Exfoliated multilayer MoTe2 field-effect transistors. Appl. Phys. Lett. 105(19), 192101 (2014)

    Article  Google Scholar 

  11. Lin, Y.F., Li, W., Li, S.L., Xu, Y., Aparecido-Ferreira, A., Komatsu, K., Tsukagoshi, K.: Barrier inhomogeneities at vertically stacked graphene-based heterostructures. Nanoscale 6(2), 795 (2014)

    Article  Google Scholar 

  12. Duong, N.T., Park, C., Nguyen, D.H., Nguyen, P.H., Tran, T.U., Park, D.Y., Jeong, M.S.: Gate-controlled MoTe2 homojunction for sub-thermionic subthreshold swing tunnel field-effect transistor. Nano Today 40, 101263 (2021)

    Article  Google Scholar 

  13. Feng, Z., Xie, Y., Chen, J., Yu, Y., Zheng, S., Zhang, R., Zhang, D.: Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing. 2D Mater. 4(2), 025018 (2017)

    Article  Google Scholar 

  14. Seo, S.G., Jeong, J., Jin, S.H.: Influence of air atmosphere on electrical characteristics of p-type MoTe2 FETs under DC and pulsed mode operation. Microelectron. Reliab. 111, 113680 (2020)

    Article  Google Scholar 

  15. Qu, D., Liu, X., Huang, M., Lee, C., Ahmed, F., Kim, H., Yoo, W.J.: Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater. 29(39), 1606433 (2017)

    Article  Google Scholar 

  16. Kumar, P., Gupta, M., Singh, K.: Low leakage current molybdenum ditelluride based nano FET using non-equilbrium greens function. In: IEEE international conference on signal processing and integrated networks, pp. 797 (2020)

  17. Iqbal, M.W., Firdous, F., Manzoor, M., Ateeq, H., Azam, S., Aftab, S., Majid, A.: Study of electrical attributes of molybdenum ditelluride (MoTe2) FET using experimental and theoretical evidences. Microelectron. Eng. 230, 111365 (2020)

    Article  Google Scholar 

  18. Seo, S.G., Hong, J.H., Ryu, J.H., Jin, S.H.: Low-frequency noise characteristics in multilayer MoTe2 FETs with hydrophobic amorphous fluoropolymers. IEEE Electron Device Lett. 40(2), 251 (2018)

    Article  Google Scholar 

  19. Zhang, B., Hu, C., Xin, Y., Li, Y., Xie, Y., Xing, Q., Wang, C.: Analysis of low-frequency 1/f noise characteristics for MoTe2 Ambipolar field-effect transistors. Nanomaterials 12(8), 1325 (2022)

    Article  Google Scholar 

  20. De, A., Kanrar, S.S., Sarkar, S.K.: Noise analysis of MoTe2-based dual-cavity MOSFET as a pH sensor. Semicond. Sci. Technol. 37(10), 105015 (2022)

    Article  Google Scholar 

  21. Kumar, P., Gupta, M., Singh, K., Kumar, N.: Linearity analysis of MoTe2-FET based single transistor AND gate using non-equilibrium Green’s function. Trans. Electr. Electron. Mater. 23(2), 164 (2022)

    Article  Google Scholar 

  22. Kuiri, M., Das, S., Muthu, D.V.S., Das, A., Sood, A.K.: Thickness dependent transition from the 1T′ to Weyl semimetal phase in ultrathin MoTe2: electrical transport, noise and Raman studies. Nanoscale 12(15), 8371 (2020)

    Article  Google Scholar 

  23. Rathinam, R., Pon, A., Carmel, S., Bhattacharyya, A.: Analysis of black phosphorus double gate MOSFET using hybrid method for analogue/RF application. IET Circuits Devices Syst. 14(8), 1167 (2020)

    Article  Google Scholar 

  24. Pon, A., Ehteshamuddin, M., Sheelvardhan, K., Dasgupta, A.: Analysis of 1/f and G-R noise in phosphorene FETs. Solid State Electron. 200, 108530 (2023)

    Article  Google Scholar 

  25. Tao, J.: An accurate MGGA-based hybrid exchange-correlation functional. J. Chem. Phys. 116(6), 2335 (2002)

    Article  Google Scholar 

  26. Chang, J., Register, L.F., Banerjee, S.K.: Ballistic performance comparison of monolayer transition metal dichalcogenide MX2 (M= Mo, W; X= S, Se, Te) metal-oxide-semiconductor field effect transistors. J. Appl. Phys. 115(8), 084506 (2014)

    Article  Google Scholar 

  27. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  28. Ojha, A., Mohapatra, N.R.: A computationally efficient quantum-corrected poisson solver for accurate device simulation of multi-gate FETs. Solid State Electron. 160, 107625 (2019)

    Article  Google Scholar 

  29. Penzin, O., Smith, L., Erlebach, A., Choi, M., Lee, K.H.: Kinetic velocity model to account for ballistic effects in the drift-diffusion transport approach. IEEE Trans. Electron Devices 64(11), 4599 (2017)

    Article  Google Scholar 

  30. Dhar, N., Chowdhury, T.H., Islam, M.A., Khan, N.A., Rashid, M.J., Alam, M.M., Amin, N.J.C.L.: Effect of n-type transition metal dichalcogenide molybdenum telluride (N–MoTe2) in back contact interface of cadmium telluride solar cells from numerical analysis. Chalcogenide Lett. 11, 6 (2014)

    Google Scholar 

  31. Synopsys, T.C.A.D.: Sentaurus Device Manual, Synopsys SDevice Ver. K-2015.06. Synopsys Inc, Mountain View, CA, USA (2015)

    Google Scholar 

  32. Ilatikhameneh, H., Ameen, T., Novakovic, B., Tan, Y., Klimeck, G., Rahman, R.: Saving Moore’s law down to 1 nm channels with anisotropic effective mass. Sci. Rep. 6(1), 1 (2016)

    Article  Google Scholar 

  33. Pon, A., Bhattacharyya, A., Rathinam, R.: Recent developments in black phosphorous transistors: a review. J. Electron. Mater. 50(11), 6020 (2021)

    Article  Google Scholar 

  34. Lin, Y.F., Xu, Y., Lin, C.Y., Suen, Y.W., Yamamoto, M., Nakaharai, S., Tsukagoshi, K.: Origin of noise in layered MoTe2 transistors and its possible use for environmental sensors. Adv. Mater. 27(42), 6612 (2015)

    Article  Google Scholar 

  35. Sangwan, V.K., Arnold, H.N., Jariwala, D., Marks, T.J., Lauhon, L.J., Hersam, M.C.: Low-frequency electronic noise in single-layer MoS2 transistors. Nano Lett. 13(9), 4351 (2013)

    Article  Google Scholar 

  36. Hooge, F.N.: 1/ƒ Noise is no surface effect. Phys. Lett. A 29(3), 139 (1969)

    Article  Google Scholar 

  37. Danneville, F., Dambrine, G., Happy, H., Tadyszal, P., Cappy, A.: Influence of the gate leakage current on the noise performance of MESFET’s and MODFETs. Solid State Electron. 38, 1081 (1995)

    Article  Google Scholar 

Download references

Funding

The work was supported by Department of Science and Technology (DST) Core Research Grant (CRG/2020/004241). The author Dr. Ramesh R has received research support from DST.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Dr. RR extracted the material properties from the Quantumwise ATK and Ms. MMM did the TCAD simulation. The first draft of the manuscript was written by both authors. They also read and approved the final manuscript.

Corresponding author

Correspondence to R. Ramesh.

Ethics declarations

Competing interests

The authors declare that they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjula, M.M., Ramesh, R. Low-frequency noise performance of a molybdenum ditelluride double-gate MOSFET. J Comput Electron 22, 1433–1442 (2023). https://doi.org/10.1007/s10825-023-02074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02074-0

Keywords

Navigation