Skip to main content
Log in

Electronic structure and optical and thermoelectric response of lead-free double perovskite BaMgLaBiO6: a first-principles study

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The electronic structure and optical and transport properties of double perovskite BaMgLaBiO6 have been investigated theoretically with density functional theory implemented in WIEN2k code. The structure is optimized to achieve minimum energy at the ground state and optimized lattice parameters. The calculated formation energy shows the stability of the compound, which confirms the possibility of synthesis. A bandgap of 2.7 eV is calculated with the generalized gradient approximation, and further improvement, i.e., 3.8 eV, is achieved with the modified Becke–Johnson (mBJ) exchange potential. The electron density plots show both the covalent and ionic bonding between the atoms. The calculated total density of states shows good agreement with the band structure. The optical parameters are also calculated and good optical conductivity is achieved in the selected energy range. The figure of merit is achieved up to 0.71 with mBJ, which shows the suitability of the studied material for alternative energy devices. The overall response of the compound makes it a potential candidate for LEDs, lasers, power switching and thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Singh, S., Maurya, R., Pandey, S.K.: Investigation of the Thermoelectric Properties of ZnV2O4 compound in high temperature region. arXiv:1605.01428 (2016)

  2. Hossain, A., Bandyopadhyay, P., Roy, S.: An overview of double perovskites A2B′ B ″O6 with small ions at A site: synthesis, structure and magnetic properties. J. Alloys Compd. 740, 414–427 (2018)

    Google Scholar 

  3. Aharbil, Y., et al.: Ferromagnetism and half metallicity induced by oxygen vacancies in the double perovskite BaSrNiWO6: DFT study. Mater. Chem. Phys. 183, 588–594 (2016)

    Google Scholar 

  4. Thind, A.S., et al.: KBaTeBiO6: a lead-free, inorganic double-perovskite semiconductor for photovoltaic applications. Chem. Mater. 31(13), 4769–4778 (2019)

    Google Scholar 

  5. Din, M.U., et al.: Electronic structure and optical response of double perovskite Rb2NaCoF6 for optoelectronic devices. Physica B Condens. Matter 2021, 413533 (2021)

    Google Scholar 

  6. Jbara, A.S., et al.: Density functional theory study of mixed halide influence on structures and optoelectronic attributes of CsPb (I/Br) 3. Appl. Opt. 59(12), 3751–3759 (2020)

    Google Scholar 

  7. Jbara, A.S., et al.: Pressure effect on structures and optoelectronic attributes of mixed halide CsPb (I/Br) 3: a density functional theory study. JOSA A 38(7), 940–946 (2021)

    Google Scholar 

  8. Serrate, D., De Teresa, J., Ibarra, M.: Double perovskites with ferromagnetism above room temperature. J. Phys.: Condens. Matter 19(2), 023201 (2006)

    Google Scholar 

  9. Fisher, B., et al.: Variable range hopping in A 2 MnReO 6 (A= Ca, Sr, Ba). J. Appl. Phys. 104(3), 033716 (2008)

    Google Scholar 

  10. Sikora, M., et al.: Evidence of unquenched Re orbital magnetic moment in AA′ Fe Re O 6 double Perovskites. Appl. Phys. Lett. 89(6), 062509 (2006)

    Google Scholar 

  11. Cava, R., et al.: Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 Perovskite. Nature 332(6167), 814–816 (1988)

    Google Scholar 

  12. Das, H., De Raychaudhury, M., Saha-Dasgupta, T.: Moderate to large magneto-optical signals in high T c double perovskites. Appl. Phys. Lett. 92(20), 201912 (2008)

    Google Scholar 

  13. Fiebig, M., et al.: Observation of coupled magnetic and electric domains. Nature 419(6909), 818–820 (2002)

    Google Scholar 

  14. Filip, M.R., et al.: Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr 6 from theory and experiment. J. Phys. Chem. Lett. 7(13), 2579–2585 (2016)

    Google Scholar 

  15. Slavney, A.H., et al.: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138(7), 2138–2141 (2016)

    Google Scholar 

  16. McClure, E.T., et al.: Cs2AgBiX6 (X= Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28(5), 1348–1354 (2016)

    Google Scholar 

  17. Marjerrison, C., et al.: Magnetic ground states in the three Os 6+(5 d2) double perovskites Ba2MOsO6 (M= Mg, Zn, and Cd) from Néel order to its suppression. Phys. Rev. B 94(13), 134429 (2016)

    Google Scholar 

  18. Khandy, S.A., Gupta, D.C.: Electronic structure, magnetism and thermoelectricity in layered perovskites: Sr2SnMnO6 and Sr2SnFeO6. J. Magn. Magn. Mater. 441, 166–173 (2017)

    Google Scholar 

  19. Zhang, C., et al.: Three-dimensionally ordered macro-/mesoporous carbon loading sulfur as high-performance cathodes for lithium/sulfur batteries. J. Alloys Compd. 714, 126–132 (2017)

    Google Scholar 

  20. Thompson, C., et al.: Frustrated magnetism in the double perovskite La2LiOs O6: a comparison with La2LiRuO6. Phys. Rev. B 93(1), 014431 (2016)

    Google Scholar 

  21. Liu, Y.-P., Fuh, H.-R., Wang, Y.-K.: Ab initio research on a new type of half-metallic double Perovskites, A2CrMO6 (A= IVA group elements; M= Mo, Re and W). Computation 2(1), 12–22 (2014)

    Google Scholar 

  22. Volonakis, G., et al.: Lead-free halide double Perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 7(7), 1254–1259 (2016)

    Google Scholar 

  23. Kumar, A., Kumar, M., Singh, R.: Magnetic, opto-electronic, and thermodynamic properties of half-metallic double perovskite oxide, Ba2YbTaO6: a density functional theory study. J. Mater. Sci.: Mater. Electron. 32(10), 12951–12965 (2021)

    Google Scholar 

  24. Parrey, K.A., et al.: Electronic structure, optical and transport properties of double perovskite La2NbMnO6: a theoretical understanding from DFT calculations. J. Electron. Mater. 47(7), 3615–3621 (2018)

    Google Scholar 

  25. Halder, S., et al.: Electronic structure and electrical conduction by polaron hopping mechanism in A2LuTaO6 (A= Ba, Sr, Ca) double perovskite oxides. Ceram. Int. 43(14), 11097–11108 (2017)

    Google Scholar 

  26. Mahan, G.: Figure of merit for thermoelectrics. J. Appl. Phys. 65(4), 1578–1583 (1989)

    Google Scholar 

  27. Sahnoun, O., et al.: Magnetic and thermoelectric properties of ordered double Perovskite Ba2FeMoO6. J. Alloys Compd. 714, 704–708 (2017)

    Google Scholar 

  28. Cernea, M., et al.: Characterization of ferromagnetic double Perovskite Sr2FeMoO6 prepared by various methods. Ceram. Int. 40(8), 11601–11609 (2014)

    Google Scholar 

  29. Rammeh, N.: Crystal structure, electronic and magnetic properties of double perovskite Ba2FeWO6: a combined experimental–theoretical study. Physica B 481, 217–223 (2016)

    Google Scholar 

  30. Lekshmi, P.N., et al.: Structural, magnetic and dielectric properties of rare earth based double Perovskites RE2NiMnO6 (RE= La, pr, Sm, Tb). Physica B 448, 285–289 (2014)

    Google Scholar 

  31. Blaha, P., et al.: An augmented plane wave+ local orbitals program for calculating crystal properties. Techn. Universitat Wien, Austria (2001)

    Google Scholar 

  32. Schwarz, K., Blaha, P., Madsen, G.K.: Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147(1–2), 71–76 (2002)

    MATH  Google Scholar 

  33. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Google Scholar 

  34. Heyd, J., et al.: Energy band gaps and lattice parameters evaluated with the Heyd–Scuseria–Ernzerhof screened hybrid functional. J. Chem. Phys. 123(17), 174101 (2005)

    Google Scholar 

  35. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    Google Scholar 

  36. Ameri, M., et al., First-principle investigations of structural, electronic and thermodynamic properties of CdS1–x Se x ternary alloys:(0.0 x 1.0). Materials Express, 2014. 4(6): p. 521–532.

  37. Madsen, G.K. and D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications, 2006. 175(1): p. 67–71.

  38. Khandy, S.A., Gupta, D.C.: Understanding ferromagnetic phase stability, electronic and transport properties of BaPaO3 and BaNpO3 from Ab-initio calculations. J. Electron. Mater. 46(10), 5531–5539 (2017)

    Google Scholar 

  39. Mahmood, Q., et al.: Study of electronic, magnetic and thermoelectric properties of AV2O4 (A= Zn, Cd, Hg) by using DFT approach. J. Phys. Chem. Solids 128, 283–290 (2019)

    Google Scholar 

  40. Yousuf, S., Gupta, D.C.: Investigation of electronic, magnetic and thermoelectric properties of Zr2NiZ (Z= Al, Ga) ferromagnets. Mater. Chem. Phys. 192, 33–40 (2017)

    Google Scholar 

  41. Penn, D.R.: Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128(5), 2093 (1962)

    MATH  Google Scholar 

  42. Khan, A.A., et al.: DFT prediction of the structural, electronic, thermoelectric and optical properties of ternary pnictides MgBe2X2 (X= N, P, As, Sb, Bi): A novel analysis of beryllium with 2A-and 5B-Elements of the structure type CaAl2Si2. Solid State Commun. 300, 113667 (2019)

    Google Scholar 

  43. Sootsman, J.R., Chung, D.Y., Kanatzidis, M.G.: New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48(46), 8616–8639 (2009)

    Google Scholar 

  44. Rabina, O., Lin, Y.-M., Dresselhaus, M.S.: Anomalously high thermoelectric figure of merit in Bi1–xSbx nanowires by carrier pocket alignment. Appl. Phys. Lett. 79(1), 81–83 (2001)

    Google Scholar 

  45. Takeuchi, T.: Conditions of electronic structure to obtain large dimensionless figure of merit for developing practical thermoelectric materials. Mater. Trans. 50, 2359–2365 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Research Center for Advanced Materials Science (RCAMS), King Khalid University, Saudi Arabia, for funding this work under grant number RCAMS/KKU/012-22

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quratul Ain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, J., Jamil, M., Jbara, A.S. et al. Electronic structure and optical and thermoelectric response of lead-free double perovskite BaMgLaBiO6: a first-principles study. J Comput Electron 22, 1482–1494 (2023). https://doi.org/10.1007/s10825-023-02073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02073-1

Keywords

Navigation