Skip to main content
Log in

Effect of introducing Al2O3 as a tunnelling layer into p-CBTS/n-CdS heterojunction solar cells

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We have studied the effect of introducing an insulating ultrathin Al2O3 with a very wide band gap (~ 7 eV) into a CBTS/CdS heterojunction to analyze the tunnelling effect in a Mo/MoS2/CBTS/Al2O3/CdS/ZnO/AZO/Al solar cell using experimentally calibrated numerical simulation. We first investigated the intra-band tunnelling of electrons from the p-CBTS absorber to the n-CdS emitter through the insulator layer (Al2O3). In the second analysis set, we found that the thickness of Al2O3 must be sufficient (~ 3 nm) to allow the minority carrier penetration. It is shown that the CBTS/Al2O3/CdS structure enhances the collection efficiency in the short- and long-wavelength regions, resulting in higher performance. Indeed, with an Al2O3 layer between CBTS and CdS, the device exhibits efficiency of 11.89% with VOC, JSC, and FF of 1.08 V, 15.45 mA/cm2 and 71.41%, respectively, compared to the device without Al2O3, which presents an efficiency of 6.75%, VOC = 0.69 V, JSC = 15.09 mA/cm2 and FF = 64.84%. This study provides a guide to further optimise the performance of kesterite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Minbashi, M., Yazdani, E.: Effect of Cation and anion migration toward contacts on Perovskite solar cell performance. Prog. Phys. Appl. Mater. 2(2), 93–102 (2022). https://doi.org/10.22075/ppam.2022.29018.1042

    Article  Google Scholar 

  2. Minbashi, M., Yazdani, E.: Comprehensive study of anomalous hysteresis behavior in perovskite-based solar cells. Sci. Rep. 12(1), 1–14 (2022). https://doi.org/10.1038/s41598-022-19194-5

    Article  Google Scholar 

  3. Hashemi, M., Minbashi, M., Ghorashi, S.M.B., Ghobadi, A., Ehsani, M.H., Heidariramsheh, M., Hajjiah, A.: Electrical and optical characterization of sprayed In2S3 thin films as an electron transporting layer in high efficient perovskite solar cells. Sol. Energy 215, 356–366 (2021). https://doi.org/10.1016/j.solener.2020.12.046

    Article  Google Scholar 

  4. Izadi, F., Ghobadi, A., Gharaati, A., Minbashi, M., Hajjiah, A.: Effect of interface defects on high efficient perovskite solar cells. Optik 227, 166061 (2021). https://doi.org/10.1016/j.ijleo.2020.166061

    Article  Google Scholar 

  5. Taheri, S., Minbashi, M., Hajjiah, A.: Effect of defects on high efficient perovskite solar cells. Opt. Mater. 111, 110601 (2021). https://doi.org/10.1016/j.optmat.2020.110601

    Article  Google Scholar 

  6. Otoufi, M.K., Ranjbar, M., Kermanpur, A., Taghavinia, N., Minbashi, M., Forouzandeh, M., Ebadi, F.: Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: Roles of the interfacial layers. Sol. Energy 208, 697–707 (2020). https://doi.org/10.1016/j.solener.2020.08.035

    Article  Google Scholar 

  7. Minbashi, M., Ghobadi, A., Yazdani, E., Ahmadkhan Kordbacheh, A., Hajjiah, A.: Efficiency enhancement of CZTSSe solar cells via screening the absorber layer by examining of different possible defects. Sci. Rep. 10(1), 1–14 (2020). https://doi.org/10.1038/s41598-020-75686-2

    Article  Google Scholar 

  8. Yousefi, M., Minbashi, M., Monfared, Z., Memarian, N., Hajjiah, A.: Improving the efficiency of CZTSSe solar cells by engineering the lattice defects in the absorber layer. Sol. Energy 208, 884–893 (2020). https://doi.org/10.1016/j.solener.2020.08.049

    Article  Google Scholar 

  9. Haghighi, M., Minbashi, M., Taghavinia, N., Kim, D.H., Mahdavi, S.M., Kordbacheh, A.A.: A modeling study on utilizing SnS2 as the buffer layer of CZT (S, Se) solar cells. Sol. Energy 167, 165–171 (2018). https://doi.org/10.1016/j.solener.2018.04.010

    Article  Google Scholar 

  10. Omrani, M.K., Minbashi, M., Memarian, N., Kim, D.H.: Improve the performance of CZTSSe solar cells by applying a SnS BSF layer. Solid-State Electr. 141, 50–57 (2018). https://doi.org/10.1016/j.sse.2017.12.004

    Article  Google Scholar 

  11. Minbashi, M., Omrani, M.K., Memarian, N., Kim, D.H.: Comparison of theoretical and experimental results for band-gap-graded CZTSSe solar cell. Curr. Appl. Phys. 17(10), 1238–1243 (2017). https://doi.org/10.1016/j.cap.2017.06.003

    Article  Google Scholar 

  12. Ge, J., Koirala, P., Grice, C., Roland, P., Yu, Y., Tan, X., Ellingson, R.J., Collins, R.W., Yan, Y.: Oxygenated CdS buffer layers enabling high open-circuit voltages in earth-abundant Cu2BaSnS4 thin-film solar cells. Adv. Energy Matter 7, 16018 (2017). https://doi.org/10.1002/aenm.201601803

    Article  Google Scholar 

  13. Shin, D., Zhu, T., Huang, X., Gunawan, O., Blum, V., Mitzi, D.: Earth-abundant chalcogenide photovoltaic devices with over 5% efficiency based on a Cu2BaSn(S, Se)4 absorber. Adv. Mater. 29, 1606945 (2017). https://doi.org/10.1002/adma.201606945

    Article  Google Scholar 

  14. Shockley, W., Queisser, H.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). https://doi.org/10.1063/1.1736034

    Article  Google Scholar 

  15. Kumar, A.: Efficiency enhancement of CZTS solar cells using structural engineering. Superlattices Microstruct. 153, 106872 (2021). https://doi.org/10.1016/j.spmi.2021.106872

    Article  Google Scholar 

  16. Song, T., Kanevce, A., Sites, J.: Emitter/absorber interface of CdTe solar cells. J. Appl. Phys. 119, 233104 (2016). https://doi.org/10.1063/1.4953820

    Article  Google Scholar 

  17. Cui, X., Sun, K., Huang, J., et al.: Cd-Free Cu 2 ZnSnS 4 solar cell with an efficiency greater than 10% enabled by Al 2 O 3 passivation layers. Energy Environ. Sci. 12(9), 2751–2764 (2019). https://doi.org/10.1039/C9EE01726G

    Article  Google Scholar 

  18. Cabas-Vidani, A., Choubrac, L., Márquez, J.A., et al.: Influence of the rear interface on composition and photoluminescence yield of CZTSSe absorbers: a case for an Al2O3 intermediate layer. ACS Appl. Mater. Interfaces. 13(16), 19487–19496 (2021). https://doi.org/10.1021/acsami.1c02437

    Article  Google Scholar 

  19. Sun, Y., Qiu, P., Wang, S., Guo, H., Meng, R., Zhou, X., Wu, L., Yu, W., Ao, J., Zhang, Y.: Defect control for high-efficiency Cu2ZnSn (S, Se) 4 solar cells by atomic layer deposition of Al2O3 on precursor film. Solar RRL 5(7), 2100181 (2021). https://doi.org/10.1002/solr.202100181

    Article  Google Scholar 

  20. Septina, W., Muzzillo, C.P., Perkins, C.L., et al.: In situ Al 2 O 3 incorporation enhances the efficiency of CuIn (S, Se) 2 solar cells prepared from molecular-ink solutions. J. Mater. Chem. A 9(16), 10419–10426 (2021). https://doi.org/10.1039/D1TA00768H

    Article  Google Scholar 

  21. Lee, Y.S., Gershon, T., Todorov, T.K., et al.: Atomic layer deposited aluminum oxide for interface passivation of Cu2ZnSn (S, Se) 4 thin-film solar cells. Adv. Energy Mater. 6(12), 1600198 (2016). https://doi.org/10.1002/aenm.201600198

    Article  Google Scholar 

  22. Erkan, M.E., Chawla, V., Scarpulla, M.A.: Reduced defect density at the CZTSSe/CdS interface by atomic layer deposition of Al2O3. J. Appl. Phys. 119, 194504 (2016). https://doi.org/10.1063/1.4948947

    Article  Google Scholar 

  23. Ojeda-Durán, E., Monfil-Leyva, K., Andrade-Arvizu, J., et al.: CZTS solar cells and the possibility of increasing VOC using evaporated Al2O3 at the CZTS/CdS interface. Sol. Energy 198, 696–703 (2020). https://doi.org/10.1016/j.solener.2020.02.009

    Article  Google Scholar 

  24. Kim, J., Park, S., Ryu, S., Oh, J., Shin, B.: Improving the open-circuit voltage of Cu2ZnSnSe4 thin film solar cells via interface passivation. Prog. Photovoltaics Res. Appl. 25(4), 308–317 (2017). https://doi.org/10.1002/pip.2864

    Article  Google Scholar 

  25. Ha, S., Choi, E., Kim, S., Roh, J.S.: influence of oxidant source on the property of atomic layer deposited Al2O3 on hydrogen-terminated Si substrate. Thin Solid Films 476, 252–257 (2005). https://doi.org/10.1016/j.tsf.2004.09.035

    Article  Google Scholar 

  26. Jakschik, S., Schroeder, U., Hecht, T., et al.: Physical characterization of thin ALD-Al2O3 films. Appl. Surf. Sci. 211, 352–359 (2003). https://doi.org/10.1016/S0169-4332(03)00264-2

    Article  Google Scholar 

  27. Kim, M., Rehman, M.A., Kang, K., et al.: The role of oxygen defects engineering via passivation of the Al2O3 interfacial layer for the direct growth of a graphene-silicon Schottky junction solar cell. Appl. Mater. Today 26, 101267 (2022). https://doi.org/10.1016/j.apmt.2021.101267

    Article  Google Scholar 

  28. Baudrit, M., Algora, C.: Tunnel diode modeling, including nonlocal trap-assisted tunneling: a focus on III–V multijunction solar cell simulation. IEEE Trans. Electr. Devices 57, 2564–2571 (2010). https://doi.org/10.1109/TED.2010.2061771

    Article  Google Scholar 

  29. Shewchun, J., Dubow, J., Myszkowski, A., Singh, R.: The operation of the semiconductor-insulator-semiconductor (SIS) solar cell: theory. J. Appl. Phys. 49, 855–864 (1978). https://doi.org/10.1063/1.324616

    Article  Google Scholar 

  30. Verschraegen, J., Burgelman, M.: Numerical modeling of intra-band tunneling for heterojunction solar cells in scaps. Thin Solid Films 515, 6276–6279 (2007). https://doi.org/10.1016/j.tsf.2006.12.049

    Article  Google Scholar 

  31. Franz, W.: WKB Methods. Tunneling phenomena in solids: lectures presented at the 1967/NATO advanced study institute at Risö, Denmark, (1969), pp.13–17.

  32. Gundlach, K.H., Simmons, J.G.: Range of validity of the WKB tunnel probability, and comparison of experimental data and theory. Thin Solid Films 4(1), 61–79 (1969)

    Article  Google Scholar 

  33. Ghobadi, A., Yousefi, M., Minbashi, M., Ahmadkhan Kordbacheh, A., Abdolvahab, A.H., Gorji, N.E.: Simulating the effect of adding BSF layers on Cu2BaSnSSe3 thin film solar cells. Opt. Mater. 107, 109927 (2020). https://doi.org/10.1016/j.optmat.2020.109927

    Article  Google Scholar 

  34. Luo, H., Zhang, Y., Li, H.: Effect of MoS2 interlayer on performances of copper-barium-tin-sulfur thin film solar cells via theoretical simulation. Sol. Energy 223, 384–397 (2021). https://doi.org/10.1016/j.solener.2021.05.074

    Article  Google Scholar 

  35. Khattak, Y., Baig, F., Toura, H., Beg, S., Soucase, B.M.: Efficiency enhancement of Cu2BaSnS4 experimental thin-film solar cell by device modeling. J. Mater. Sci. 54, 14787–14796 (2019). https://doi.org/10.1007/s10853-019-03942-6

    Article  Google Scholar 

  36. Gupta, G., Dixit, A.: simulation studies on photovoltaic response of ultrathin CuSb(S/Se)2 ternary compound semiconductors absorbers–based single junction solar cells. Int. J. Energy Res. 4, 1–13 (2020). https://doi.org/10.1002/er.5158

    Article  Google Scholar 

  37. Lin, J., Xu, J., Yang, Y.: Numerical analysis of the effect of MoS2 interface layers on copper-zinc-tin-sulfur thin film solar cells. Optik 201, 163496 (2020). https://doi.org/10.1016/j.ijleo.2019.163496

    Article  Google Scholar 

  38. Huang, M.L., Chang, Y.C., Chang, C.H., Lin, T.D., Kwo, J., Wu, T.B., Hong, M.: Energy-band parameters of atomic-layer-deposition Al2O3∕InGaAs heterostructure. Appl. Phys. Lett 89, 012903 (2006). https://doi.org/10.1063/1.2218826

    Article  Google Scholar 

  39. Halls, M.D., Raghavachari, K.: Atomic layer deposition growth reactions of Al2O3 on Si(100)-2×1. J. Phys. Chem. B 108, 4058–4062 (2004). https://doi.org/10.1021/jp0378079

    Article  Google Scholar 

  40. Sharbati, S., Gharibshahian, I., Orouji, A.A.: Designing of AlxGa1-xAs/CIGS tandem solar cell by analytical model. Sol. Energy 188, 1–9 (2019). https://doi.org/10.1016/j.solener.2019.05.074

    Article  Google Scholar 

  41. Basak, A., Singh, U.P.: Numerical modelling and analysis of earth abundant Sb2S3 and Sb2Se3 based solar cells using SCAPS-1D. Sol. Energy Mater. Sol. Cells 230, 111184 (2021). https://doi.org/10.1016/j.solmat.2021.111184

    Article  Google Scholar 

  42. Beyrami, N., Saadat, M., Sohbatzadeh, Z.: A modeling study on utilizing In2S3 as a buffer layer in CIGS-based solar cells. J Comput. Electr. 21, 1329–1337 (2022). https://doi.org/10.1007/s10825-022-01927-4

    Article  Google Scholar 

  43. Biplab, S.R.I., Ali, M.H., Moon, M.M.A., et al.: Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer. J Comput. Electr. 19, 342–352 (2020). https://doi.org/10.1007/s10825-019-01433-0

    Article  Google Scholar 

  44. Bibi, B., Farhadi, B., ur Rahman, W., et al.: A novel design of CTZS/Si tandem solar cell: a numerical approach. J. Comput. Electr. 20, 1769–1778 (2021). https://doi.org/10.1007/s10825-021-01733-4

    Article  Google Scholar 

  45. Henni, W., Rahal, W.L., Rached, D.: Path toward high-efficiency CZTS solar cells with buffer layer optimization. Acta Phys. Pol. A 142, 445 (2022)

    Article  Google Scholar 

  46. Hashemi, M., Minbashi, M., Ghorashi, S.M.B., Ghobadi, A.: A modeling study on utilizing low temperature sprayed In2S3 as the buffer layer of CuBaSn (S, Se) solar cells. Sci. Rep. 11(1), 1–11 (2021)

    Article  Google Scholar 

  47. Minbashi, M., Ghobadi, A., Ehsani, M.H., Rezagholipour Dizaji, H., Memarian, N.: Simulation of high efficiency SnS-based solar cells with SCAPS. Sol. Energy 176, 520–525 (2018)

    Article  Google Scholar 

  48. Tinedert, I.E., Saadoune, A., Bouchama, I., Saeed, M.A.: Numerical modelling and optimization of CdS/CdTe solar cell with incorporation of Cu2O HT-EBL layer. Opt. Mater. 106, 109970 (2020)

    Article  Google Scholar 

  49. Maklavani, S.E., Mohammadnejad, S.: Enhancing the open-circuit voltage and efficiency of CZTS thin-film solar cells via band-offset engineering. Opt. Quant Electr. 52, 1–22 (2020). https://doi.org/10.1007/s11082-019-2180-6

    Article  Google Scholar 

  50. Terlinden, N.M., Dingemans, G., Sanden, M.C., Kessels, W.M.: Role of field-effect on c-Si surface passivation by ultrathin (2–20 nm) atomic layer deposited Al2O3. Appl. Phys. Lett. 96, 112101 (2010). https://doi.org/10.1063/1.3334729

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Marc Burgelman, University of Ghent, Belgium, for providing the SCAPS-1D simulator. This work was supported by the University-Training Research Projects, and the General manager of Scientific Research and Technological Development (DGRSDT), Algeria.

Funding

The authors declare that no funds or grants were received from any institutions for this research.

Author information

Authors and Affiliations

Authors

Contributions

WH contributed to conceptualization, data curation, methodology, investigation, and writing—original draft. WLR contributed to conceptualization, writing, methodology, investigation, supervision. DR contributed to investigation, supervision, review and editing. AB contributed to validation and supervision.

Corresponding author

Correspondence to Wafaâ Henni.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henni, W., Rahal, W.L., Rached, D. et al. Effect of introducing Al2O3 as a tunnelling layer into p-CBTS/n-CdS heterojunction solar cells. J Comput Electron 22, 897–905 (2023). https://doi.org/10.1007/s10825-023-02031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02031-x

Keywords

Navigation