Skip to main content
Log in

Highly efficient Cd-Free ZnMgO/CIGS solar cells via effective band-gap tuning strategy

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This work proposes a new modeling framework based on combining graded band-gap (GBG) engineering and metaheuristic optimization to improve the Cd-Free ZnMgO/CIGS solar cell performances. Analytical and numerical calculations are carried out to assess the influence of band-gap profiles of both buffer and active layers on the electronic and optical properties of the studied solar cell. This investigation shows a great improvement of solar cell efficiency by increasing the optoelectronic figures of merit through tuning and optimizing the band-gap profiles and the conduction band offset at the ZnMgO/CIGS interface. Moreover, metaheuristic-based optimization models are developed to optimize the GBG profiles and enhance the optical and electrical performances of the solar cell. In this context, we recorded very satisfactory results, where the optimized design with GBG paradigm offers a high efficiency of 31.88% compared to 23.35% provided by the conventional CdS/CIGS solar cell. Therefore, this study provides a new strategy in enhancing the efficiency of thin-film solar cells by exploiting the graded band-gap engineering combined with metaheuristic optimization approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Green, M.A., Dunlop, E.D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X.: Solar cell efficiency tables (version 56). Prog. Photovolt. 28, 3–15 (2020)

    Article  Google Scholar 

  2. Nayak, P.K., Mahesh, S., Snaith, H.J., Cahen, D.: Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019)

    Article  Google Scholar 

  3. Branker, K., Pathak, M., Pearce, J.M.: A review of solar photovoltaic levelized cost of electricity. Renew. Sustain. Energy Rev 15, 4470–4482 (2011)

    Article  Google Scholar 

  4. Green, M.A.: Tracking solar cell conversion efficiency. Nat. Rev. Phys. 2, 172–173 (2020)

    Article  Google Scholar 

  5. Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R.: New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovolt. Res. Appl. 19, 894–897 (2011)

    Article  Google Scholar 

  6. Belarbia, F., Rahal, W., Rached, D., Benghabrit, S., Adnane, M.: A comparative study of different buffer layers for CZTS solar cell using Scaps-1D simulation program. Optik Int. J. Light Electron Opt. 216, 1–7 (2020)

    Google Scholar 

  7. Ferhati, H., Djeffal, F., Drissi, L.B.: Performance improvement of Perovskite/CZTS tandem solar cell using low-cost ZnS/Ag/ITO multilayer spectrum splitter. Superlattices Microstruct. 148, 1–10 (2020)

    Article  Google Scholar 

  8. Kacha, K., Djeffal, F., Ferhati, H., Arar, D., Meguellati, M.: Numerical investigation of a double-junction a: SiGe thin-film solar cell including the multi-trench region. J. Semicond. 36, 1–5 (2015)

    Article  Google Scholar 

  9. Prasanna, J.L., Goel, E., Kumar, A., Laref, A., Santhosh, C., Ranjan, P., Kumar, A.: Bandgap graded perovskite solar cell for above 30% efficiency. Optik 269, 1–5 (2022)

    Article  Google Scholar 

  10. Sun, H., Deng, K., Xiong, J., Li, L.: Graded bandgap perovskite with intrinsic n–p homojunction expands photon harvesting range and enables all transport layer-free perovskite solar cells. Adv. Energy Mater. 1, 1–9 (2020)

    Google Scholar 

  11. Simya, O.K., Mahaboobbatcha, A., Balachander, K.: Compositional grading of CZTSSe alloy using exponential and uniform grading laws in SCAPS-ID simulation. Superlattices Microstruct. 92, 285–293 (2016)

    Article  Google Scholar 

  12. Maharana, B., Jha, R., Chatterjee, S.: Metal oxides as buffer layers for CZTS based solar cells: a numerical analysis by SCAPS-1D software. Opt. Mater. 131, 1–9 (2022)

    Article  Google Scholar 

  13. Ferhati, H., Djeffal, F.: Role of intermediate metallic sub-layers in improving the efficiency of kesterite solar cells: concept and optimization. Mater. Res. Express 5, 1–11 (2018)

    Article  Google Scholar 

  14. Niki, S., Contreras, M., Repins, I., Powalla, M., Kushiya, K., Ishizuka, S., Matsubara, K.: Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. Prog. Photovolt. Res. Appl. 18, 453–466 (2010)

    Article  Google Scholar 

  15. Shi, J.H., Li, Z.Q., Zhang, D.W., Liu, Q.Q., Sun, Z., Huang, S.M.: Fabrication of Cu(In,Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target. Prog. Photovolt. Res. Appl. 19, 160–164 (2011)

    Article  Google Scholar 

  16. Hibberd, C.J., Chassaing, E., Liu, W., Mitzi, D.B., Lincot, D., Tiwari, A.N.: Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers. Prog. Photovolt. Res. Appl. 18, 434–452 (2010)

    Article  Google Scholar 

  17. Zahedifar, M., Ghanbari, E., Moradi, M., Saadat, M.: Optimized annealing regime of CuGaSe2 nanoparticles prepared by solvothermal method. Phys. Status Solidi A 212, 657–661 (2015)

    Article  Google Scholar 

  18. El-Ihalane, H., Atourki, L., Kirou, H., Ihlal, A., Bouabid, K.: Numerical study of thin films CIGS bilayer solar cells using SCAPS. Mater. Today 3, 2570–2577 (2016)

    Google Scholar 

  19. Nakamura, M., Yamaguchi, K., et al.: Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovolt. 9, 1863–1867 (2019)

    Article  Google Scholar 

  20. Liu, W., Li, H., Qiao, B., Zhao, S., Xu, Z., Song, D.: Highly efficient CIGS solar cells based on a new CIGS bandgap gradient design characterized by numerical simulation. Sol. Energy 233, 337–344 (2022)

    Article  Google Scholar 

  21. Ferhati, H., Djeffal, F.: Graded band-gap engineering for increased efficiency in CZTS solar cells. Opt. Mater. 76, 393–399 (2018)

    Article  Google Scholar 

  22. Kharwar, S., Singh, S., Jaiswal, N.K.: Structural & electronic properties of zigzag silicene nanoribbons with symmetric/asymmetric edge passivations via fluorine and hydrogen. Physica B Condens. Matter 615, 1–13 (2021)

    Article  Google Scholar 

  23. Kharwar, S., Singh, S., Jaiswal, N.K.: First-principle investigations of cove edged GaN nanoribbon for nanoscale resonant tunneling applications. Solid State Commun. 340, 1–8 (2021)

    Article  Google Scholar 

  24. Kharwar, S., Singh, S., Jaiswal, N.K.: Selective edge-hydrogenated zigzag boron nitride nanoribbons for giant magnetoresistance and rectifying behavior. IEEE Trans. Electron Devices 68, 5894–5900 (2021)

    Article  Google Scholar 

  25. Moradia, M., Teimouria, R., Saadata, M., Zahedifar, M.: Buffer layer replacement: a method for increasing the conversion efficiency of CIGS thin film solar cells. Optik 136, 222–227 (2017)

    Article  Google Scholar 

  26. Prasad, R., Pal, R., Singh, U.P.: Performance optimization of single graded CIGS absorber and buffer layers for high efficiency: a numerical approach. Superlattices Microstruct. 161, 107094 (2022)

    Article  Google Scholar 

  27. Ghamsari-Yazdel, F., Fattah, A.: Performance enhancement of CIGS solar cells using ITO as buffer layer. Micro Nanostruct. 168, 207289 (2022)

    Article  Google Scholar 

  28. Prasad, R., Das, A.K., Singh, U.P.: Impact of buffer layers on the performance of graded CIGS solar cells: a numerical approach. Appl. Phys. A 127, 1–12 (2021)

    Google Scholar 

  29. Kacha, K., Djeffal, F., Ferhati, H., Foughali, L., Bendjerad, A., Benhaya, A.: Efficiency improvement of CIGS solar cells using RF sputtered TCO/Ag/ TCO thin-film as prospective buffer layer. Ceram. Int. 48, 20194 (2022)

    Article  Google Scholar 

  30. Khoshsirat, N., Md Yunus, N.A., Hamidon, M.N., Shafie, S., Amin, N.: Analysis of absorber and buffer layer band gap grading on CIGS thin film solar cell performance using SCAPS. Pertanika J. Sci. Technol. 23, 241–250 (2015)

    Google Scholar 

  31. Salhi, B.: The photovoltaic cell based on CIGS: principles and technologies. Materials 15, 1–27 (2022)

    Article  Google Scholar 

  32. Ferhati, H., Djeffal, F., Drissi, L.B.: Metaheuristic-based decision maker framework for the development of multispectral IGZO thin-film phototransistors. J. Sci. Adv. Mater. Devices 7, 1–11 (2022)

    Google Scholar 

  33. Djeffal, F., Ferhati, H.: A new high-performance phototransistor design based on both surface texturization and graded gate doping engineering. J. Comput. Electron 15, 301–310 (2016)

    Article  Google Scholar 

  34. Ferhati, H., Djeffal, F.: Exceeding 30 % efficiency for an environment-friendly tandem solar cell based on earth-abundant Se/CZTS materials. Phys. E Low Dimens. Syst. 109, 52–58 (2019)

    Article  Google Scholar 

  35. Sood, M., Gnanasambandan, P., Adeleye, D., Shukla, S., Adjeroud, N., Leturcq, R., Siebentritt, S.: Electrical barriers and their elimination by tuning (Zn,Mg)O buffer composition in Cu(In,Ga)S2 solar cells: systematic approach to achieve over 14% power conversion efficiency. J. Phys. Energy 3, 1–11 (2022)

    Google Scholar 

  36. Kadri, A., Ferhati, H., Djeffal, F.: Giant responsivity of a new optically controlled graphene UV-phototransistor using graded band-gap ZnMgO gate. Sens. Actuators A 325, 1–9 (2021)

    Article  Google Scholar 

  37. Seok Choi, W., Yoon, J.-G.: Optical characterization of band gap graded ZnMgO films. Solid State Commun. 152, 345–348 (2012)

    Article  Google Scholar 

  38. Tauc, J., Menth, A.: States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972)

    Article  Google Scholar 

  39. Morales-Acevedo, A.: A simple model of graded band-gap CuInGaSe2 solar cells. Energy Procedia 2, 169–176 (2010)

    Article  Google Scholar 

  40. Courel, M., Andrade-Arvizu, J.A., Vigil-Galán, O.: The role of buffer/kesterite interface recombination and minority carrier lifetime on kesterite thin-film solar cells. Mater. Res. Express 3, 1–14 (2016)

    Article  Google Scholar 

  41. Morales-Acevedo, A.: Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells. Sol. Energy Mater. Sol. Cell 93, 40–44 (2009)

    Article  Google Scholar 

  42. Sufer, A.L., Abdullah, A.K.: Computer Simulation of the effect of band gap grading of the CIGS absorber layer on the performance of Cds/CIGS thin film solar cell. Al-Rafida Eng. 20, 44–60 (2012)

    Google Scholar 

  43. Aissat, A., Arbouz, H., Vilcot, J.P.: Optimization and improvement of a front graded bandgap CuInGaSe2 solar cell. Sol. Energy Mater. Sol. Cells 180, 381–385 (2018)

    Article  Google Scholar 

  44. Benmir, A., Aida, M.S.: Analytical modeling and simulation of CIGS solar cells. Energy Procedia 36, 618–627 (2013)

    Article  Google Scholar 

  45. Morales-Acevedo, A.: Analytical model for the photocurrent of solar cells based on graded band-gap CdZnTe thin films. Sol. Energy Mater. Sol. Cell 95, 2837–2841 (2011)

    Article  Google Scholar 

  46. Hwang, J., Cho, Y., Shin, D., Jeong, I., Park, J.H., Cho, J.-S., Gwak, J., Yun, J.H., Han, K., Chang, H.S., Kim, K.: Improved carrier transport in CIGS solar cells induced by Ag treatment. J. Alloys Compd. 886, 1–6 (2021)

    Article  Google Scholar 

  47. Naghavi, N., Abou-Ras, D., Allsop, N., Barreau, N., et al.: Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments. Prog. Photovolt. Res. Appl 18, 411–433 (2010)

    Article  Google Scholar 

  48. Minemoto, T., Okamoto, A., Takakura, H.: Sputtered ZnO-based buffer layer for band offset control in Cu(In, Ga)Se2 solar cells. Thin Solid Films 519, 7568–7571 (2011)

    Article  Google Scholar 

  49. Ferhati, H., Djeffal, F., Drissi, L.B.: A new approach to the modeling and simulation of multi-junction solar cells. Optik 200, 1–8 (2020)

    Article  Google Scholar 

  50. Liu, J., Zhang, M., Feng, X.: Simulation of graded bandgap on the performance of back-wall superstrate CIGS solar cells. Optik 172, 1172–1178 (2018)

    Article  Google Scholar 

  51. Djeffal, F., Lakhdar, N., Meguellati, M., Benhaya, A.: Particle swarm optimization versus genetic algorithms to study the electron mobility in wurtzite GaN based devices. Solid State Electron 53, 988–992 (2009)

    Article  Google Scholar 

  52. Djeffal, F., Bendib, T., Benzid, R., Benhaya, A.: An approach based on particle swarm computation to study the nanoscale DG MOSFET-based circuits. Turk. J. Electron. Eng. Comput. Sci 18, 1131–1140 (2010)

    Google Scholar 

  53. Ferhati, H., Djeffal, F., Martin, N.: Highly improved responsivity of self-powered UV–Visible photodetector based on TiO2/Ag/TiO2 multilayer deposited by GLAD technique: effects of oriented columns and nano-sculptured surface. Appl. Surf. Sci. 529, 147069 (2020)

    Article  Google Scholar 

  54. Ferhati, H., Djeffal, F.: Role of optimized grooves surface -textured front glass in improving TiO2 thin film UV photodetector performance. IEEE Sens. J 16, 5618–5624 (2016)

    Article  Google Scholar 

  55. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. J. IEEE Trans. Evol. Comput. 73, 6–58 (2002)

    Google Scholar 

  56. Kim, J.H., Shin, D., Ahn, B.T.: Surface morphology control of In2S3 buffer layer by Sn incorporation and its application to cadmium-free Cu(In,Ga)Se2 thin-film solar cells. Curr. Appl. Phys. 16, 1040–1045 (2016)

    Article  Google Scholar 

  57. Witte, W., Hariskos, D., Powalla, M.: Comparison of charge distributions in CIGS thin-film solar cells with ZnS/(Zn,Mg)O and CdS/i-ZnO buffers. Thin Solid Films 519, 7549–7552 (2011)

    Article  Google Scholar 

  58. Mostefaoui, M., Mazari, H., Khelifi, S., Bouraiou, A., Dabou, R.: Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia 74, 736–744 (2015)

    Article  Google Scholar 

  59. Ashraf, M.A., Alam, I.: Numerical simulation of CIGS, CISSe and CZTS-based solar cells with In2S3 as buffer layer and Au as back contact using SCAPS 1D. Eng. Res. Express 2, 1–17 (2022)

    Google Scholar 

  60. Nakada, T., Mizutani, M.: 18% efficiency Cd-free Cu(In,Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Jpn. J. Appl. Phys. 41, 97–100 (2002)

    Article  Google Scholar 

  61. Youn, S.-M., Park, M.-J., Kim, J.H., Jeong, C.: Performance enhancement of CIGS thin-film solar cells with a functional-window NiO thin layer. J. Alloys Compd. 886, 1–7 (2020)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Djeffal.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maoucha, A., Ferhati, H., Djeffal, F. et al. Highly efficient Cd-Free ZnMgO/CIGS solar cells via effective band-gap tuning strategy. J Comput Electron 22, 887–896 (2023). https://doi.org/10.1007/s10825-023-02028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02028-6

Keywords

Navigation