Skip to main content
Log in

A novel micro-scaled multi-layered optical stress sensor for force sensing

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Miniaturization and integration of sensors on chip has become essential with advancements of artificial intelligence and the Internet of Thing. The size of existing microbend optical stress sensors is too large for integration on a chip, necessitating fundamental change of structural design to achieve micron-sized lithography. In this regard, we demonstrate the design and analysis of a multi-layer microbend optical stress sensor using an advanced Multiphysics simulation model that could be potentially embedded on chips after the experimental tests of the basic microbend optical stress sensor units. The sensor architecture is optimized not just in size, but also the materials in the layers. A well-optimized structure of Glass/Ag/SU8/PDMS architecture delivers best comprehensive performance resulting in a sensitivity in one pitch of 110.42 µm which is 0.00935 N−1 with a linearity of R2 = 0.99868 at a detectable range of 1200 N–2800 N. This work paves way for embedding microbend optical stress sensors on chips to further accelerate sensors for communication and information technologies.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kalasin, S., Sangnuang, P., Surareungchai, W.: Satellite-based sensor for environmental heat-stress sweat creatinine monitoring: the remote artificial intelligence-assisted epidermal wearable sensing for health evaluation. ACS Biomater. Sci. Eng. 7(1), 322 (2021)

    Article  Google Scholar 

  2. H. Goyal, R. Mann, Z. Gandhi, A. Perisetti, Z. H. Zhang, N. Sharma, S. Saligram, S. Inamdar, and B. Tharian, Application of artificial intelligence in pancreaticobiliary diseases, Ther. Adv. Gastrointest. Endosc. 14 (2021)

  3. Wu, H.Q., Dai, Q.H.: Artificial intelligence accelerated by light. Nature 589(7840), 25 (2021)

    Article  Google Scholar 

  4. Reddy, B.S.N., Pramada, S.K., Roshni, T.: Monthly surface runoff prediction using artificial intelligence: a study from a tropical climate river basin. J. Earth Syst. Sci. 130(1), 35 (2021)

    Article  Google Scholar 

  5. Scheetz, J., He, M., van Wijngaarden, P.: Ophthalmology and the emergence of artificial intelligence. Med. J. Australia 214(4), 155 (2021)

    Article  Google Scholar 

  6. Jacques, T., Fournier, L., Zins, M., Adamsbaum, C., Chaumoitre, K., Feydy, A., Millet, I., Montaudon, M., Beregi, J.-P., Bartoli, J.-M., Cart, P., Masson, J.-P., Meder, J.-F., Boyer, L., Cotten, A.: Proposals for the use of artificial intelligence in emergency radiology. Diagn. Interv. Imaging 102(2), 63 (2021)

    Article  Google Scholar 

  7. Edwards, S.D.: The HeartMath coherence model: implications and challenges for artificial intelligence and robotics. AI & Soc. 34(4), 899 (2019)

    Article  Google Scholar 

  8. Li, X.: Research on tourism industrial cluster and information platform based on Internet of things technology. J. Distrib. Sens. N, Int (2019). https://doi.org/10.1177/1550147719858840

    Book  Google Scholar 

  9. Ang, K.L.M., Seng, J.K.P.: Application Specific Internet of Things (ASIoTs): taxonomy, applications, use case and future directions. IEEE Access 7, 56577 (2019)

    Article  Google Scholar 

  10. Wang, W., Yiu, H.H.P., Li, W.J., Roy, V.A.L.: The principle and architectures of optical stress sensors and the progress on the development of microbend optical sensors. Adv. Opt. Mater. 9(10), 2001693 (2021)

    Article  Google Scholar 

  11. Ge, J., Sun, L., Zhang, F.-R., Zhang, Y., Shi, L.-A., Zhao, H.-Y., Zhu, H.-W., Jiang, H.-L., Yu, S.-H.: A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv. Mater. 28(4), 722 (2016)

    Article  Google Scholar 

  12. Hu, F., Zhang, L., Liu, W.Z., Guo, X.X., Shi, L., Liu, X.Y.: Gel-based artificial photonic skin to sense a gentle touch by reflection. ACS Appl. Mater. Interfaces 11(17), 15195 (2019)

    Article  Google Scholar 

  13. Heo, S.H., Kim, C., Kim, T.S., Park, H.S.: Human-palm-inspired artificial skin material enhances operational functionality of hand manipulation. Adv. Funct. Mater. 30, 2002360 (2020)

    Article  Google Scholar 

  14. Liang, F., Fan, Y.J., Kuang, S.Y., Wang, H.L., Wang, Y., Xu, P., Wang, Z.L., Zhu, G.: Layer-by-layer assembly of nanofiber/nanoparticle artificial skin for strain-insensitive UV shielding and visualized UV detection. Adv. Mater. Technol. 5(4), 1900976 (2020)

    Article  Google Scholar 

  15. Park, S., Shin, B.G., Jang, S., Chung, K.: Three-dimensional self-healable touch sensing artificial skin device. ACS Appl. Mater. Interfaces 12(3), 3953 (2020)

    Article  Google Scholar 

  16. Low, Z.W.K., Li, Z.B., Owh, C., Chee, P.L., Ye, E.Y., Kai, D., Yang, D.P., Loh, X.J.: Using artificial skin devices as skin replacements: Insights into superficial treatment. Small 15(9), 1805453 (2019)

    Article  Google Scholar 

  17. Sun, Q.-J., Zhao, X.-H., Yeung, C.-C., Tian, Q., Kong, K.-W., Wu, W., Venkatesh, S., Li, W.-J., Roy, V.A.L.: Bioinspired, self-powered, and highly sensitive electronic skin for sensing static and dynamic pressures. ACS Appl. Mater. Interfaces 12(33), 37239 (2020)

    Article  Google Scholar 

  18. Sun, Q.-J., Zhao, X.-H., Zhou, Y., Yeung, C.-C., Wu, W., Venkatesh, S., Xu, Z.-X., Wylie, J.J., Li, W.-J., Roy, V.A.L.: Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams. Adv. Funct. Mater. 29(18), 1808829 (2019)

    Article  Google Scholar 

  19. Sun, Q.-J., Li, T., Wu, W., Venkatesh, S., Zhao, X.-H., Xu, Z.-X., Roy, V.A.L.: Printed high-k dielectric for flexible low-power extended gate field-effect transistor in sensing pressure. ACS Appl. Electron. Mater. 1(5), 711 (2019)

    Article  Google Scholar 

  20. Sun, Q.J., Zhuang, J.Q., Venkatesh, S., Zhou, Y., Han, S.T., Wu, W., Kong, K.W., Li, W.J., Chen, X.F., Li, R.K.Y., Roy, V.A.L.: Highly sensitive and ultrastable skin sensors for biopressure and bioforce measurements based on hierarchical microstructures. ACS Appl. Mater. Interfaces 10(4), 4086 (2018)

    Article  Google Scholar 

  21. Lim, Y., Park, J.: Sensor resource sharing approaches in sensor-cloud infrastructure. Int. J. Distrib. Sens. N. 2014, 476090 (2014)

    Article  Google Scholar 

  22. Basjaruddin, N.C., Syahbarudin, F., Sutjiredjeki, E.: Measurement Device for Stress Level and Vital Sign Based on Sensor Fusion. Healthc. Inform. Res. 27(1), 11 (2021)

    Article  Google Scholar 

  23. Kayed, M.O., Balbola, A.A., Lou, E., Moussa, W.A.: Development of MEMS-based piezoresistive 3D stress/strain sensor using strain technology and smart temperature compensation. J. Micromech. Microeng. 31(3), 035010 (2021)

    Article  Google Scholar 

  24. T. Tran Quang and N.-E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare, Adv. Mater. 28 (22), 4338 (2016)

  25. Khan, Y., Ostfeld, A.E., Lochner, C.M., Pierre, A., Arias, A.C.: Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28(22), 4373 (2016)

    Article  Google Scholar 

  26. Pang, C., Koo, J.H., Amanda, N., Caves, J.M., Kim, M.-G., Chortos, A., Kim, K., Wang, P.J., Tok, J.B.H., Bao, Z.: Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 27(4), 634 (2015)

    Article  Google Scholar 

  27. Milici, S., Lazaro, A., Villarino, R., Girbau, D., Magnarosa, M.: Wireless Wearable Magnetometer-Based Sensor for Sleep Quality Monitoring. IEEE Sens. J. 18(5), 2145 (2018)

    Article  Google Scholar 

  28. Chen, J., Abbod, M., Shieh, J.S.: Pain and Stress Detection Using Wearable Sensors and Devices-A Review. Sensors 21(4), 1030 (2021)

    Article  Google Scholar 

  29. Georgopoulou, A., Michel, S., Vanderborght, B., Clemens, F.: Piezoresistive sensor fiber composites based on silicone elastomers for the monitoring of the position of a robot arm. Sens. Actuator. A Phys. 318, 112433 (2021)

    Article  Google Scholar 

  30. Wang, X., Liu, Z., Zhang, T.: Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017)

    Article  Google Scholar 

  31. Kenry, J. C. Yeo, and C. T. Lim, Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications, Microsyst. Nanoeng. 2, 16043 (2016)

  32. Wang, J.L., Lu, C.H., Zhang, K.: Textile-Based Strain Sensor for Human Motion Detection. Energy Environ. Mater. 3(1), 80 (2020)

    Article  Google Scholar 

  33. Chen, W., Yan, X.: Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. J. Mater. Sci. Technol. 43, 175 (2020)

    Article  Google Scholar 

  34. Rivadeneyra, A., Lopez-Villanueva, J.A.: Recent Advances in Printed Capacitive Sensors. Micromachines 11(4), 20 (2020)

    Article  Google Scholar 

  35. Song, P.S., Ma, Z., Ma, J., Yang, L.L., Wei, J.T., Zhao, Y.M., Zhang, M.L., Yang, F.H., Wang, X.D.: Recent Progress of Miniature MEMS Pressure Sensors. Micromachines 11(1), 38 (2020)

    Article  Google Scholar 

  36. Lu, T.W., Lee, P.T.: Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity. Opt. Express 17(3), 1518 (2009)

    Article  Google Scholar 

  37. Gafsi, R., Lecoy, P., Malki, A.: Stress optical fiber sensor using light coupling between two laterally fused multimode optical fibers. Appl. Optics 37(16), 3417 (1998)

    Article  Google Scholar 

  38. Su, L., Chiang, K.S., Lu, C.: Fiber Bragg-grating incorporated microbend sensor for simultaneous mechanical parameter and temperature measurement. IEEE Photonics Technol. Lett. 17(12), 2697 (2005)

    Article  Google Scholar 

  39. Chen, Z.H., Lau, D., Teo, J.T., Ng, S.H., Yang, X.F., Kei, P.L.: Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor. J. Biomed. Opt. 19(5), 057001 (2014)

    Article  Google Scholar 

  40. A. Bichler, S. Lecler, B. Serio, S. Fischer, and P. Pfeiffer, Mode couplings and elasto-optic effects study in a proposed mechanical microperturbed multimode optical fiber sensor, J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 29 (11), 2386 (2012)

  41. MacLean, A., Moran, C., Johnstone, W., Culshaw, B., Marsh, D., Parker, P.: Detection of hydrocarbon fuel spills using a distributed fibre optic sensor. Sens. Actuator A-Phys. 109(1–2), 60 (2003)

    Article  Google Scholar 

  42. Lau, D., Chen, Z.H., Teo, J.T., Ng, S.H., Rumpel, H., Lian, Y., Yang, H., Kei, P.L.: Intensity-modulated microbend fiber optic sensor for respiratory monitoring and gating during MRI. IEEE Trans. Biomed. Eng. 60(9), 2655 (2013)

    Article  Google Scholar 

  43. Jenstrom, D.T., Chen, C.L.: A fiber optic microbend tactile sensor array. Sens. Actuators 20(3), 239 (1989)

    Article  Google Scholar 

  44. Linec, M., Donlagic, D.: A plastic optical fiber microbend sensor used as a low-cost anti-squeeze detector. IEEE Sens. J. 7(9–10), 1262 (2007)

    Article  Google Scholar 

  45. Sadek, I., Seet, E., Biswas, J., Abdulrazak, B., Mokhtari, M.: Nonintrusive vital signs monitoring for sleep apnea patients: A preliminary study. IEEE Access 6, 2506 (2018)

    Article  Google Scholar 

  46. Yang, X.F., Chen, Z.H., Elvin, C.S.M., Janice, L.H.Y., Ng, S.H., Teo, J.T., Wu, R.F.: Textile fiber optic microbend sensor used for heartbeat and respiration monitoring. IEEE Sens. J. 15(2), 757 (2015)

    Article  Google Scholar 

  47. Lagakos, N., Trott, W.J., Hickman, T.R., Cole, J.H., Bucaro, J.A.: Microbend fiber-optic sensor as extended hydrophone. IEEE J. Quantum Electron. 18(10), 1633 (1982)

    Article  Google Scholar 

  48. Grossman, B.G., Yongphiphatwong, T., Sokol, M.: In situ device for salinity measurements (chloride detection) of ocean surface. Opt. Laser Technol. 37(3), 217 (2005)

    Article  Google Scholar 

  49. Wu, L.C., Wang, Q., Guo, M.J., Du, C., Zhang, Y.N.: Characterization of displacement sensing based on fiber optic microbend losses. Instrum. Sci. Technol. 44(5), 471 (2016)

    Article  Google Scholar 

  50. Diemeer, M.B.J., Trommel, E.S.: Fiber-optic microbend sensors: sensitivity as a function of distortion wavelength. Opt. Lett. 9(6), 260 (1984)

    Article  Google Scholar 

  51. Horsthuis, W.H.G., Fluitman, J.H.J.: The development of fibre optic microbend sensors. Sens. Actuators 3(2), 99 (1983)

    Google Scholar 

  52. Mekhtiev, A.D., Yurchenko, A.V., Neshina, E.G., Al’kina, A.D., Madi, P.S.: Physical Principles of Developing Pressure Sensors Using Refractive Index Changes in Optical Fiber Microbending. Russ. Phys. J. 63(2), 323 (2020)

    Article  Google Scholar 

  53. Pandey, N.K., Yadav, B.C.: Embedded fibre optic microbend sensor for measurement of high pressure and crack detection. Sens. Actuator A-Phys. 128(1), 33 (2006)

    Article  Google Scholar 

  54. Luo, F., Liu, J.Y., Ma, N.B., Morse, T.F.: A fiber optic microbend sensor for distributed sensing application in the structural strain monitoring. Sens. Actuator A-Phys. 75(1), 41 (1999)

    Article  Google Scholar 

  55. COMSOL Multiphysics® v. 5.5. cn.comsol.com. COMSOL AB, Stockholm, Sweden.

  56. Denu, G.A., Liu, Z.C., Fu, J., Wang, H.X.: A finite element analysis of the effects of geometrical shape on the elastic properties of chemical vapor deposited diamond nanowire. AIP Adv. 7(1), 015025 (2017)

    Article  Google Scholar 

  57. Sapra, G., Sharma, P.: Design and analysis of MEMS MWCNT/epoxy strain sensor using COMSOL. Pramana 89(1), 10 (2017)

    Article  Google Scholar 

  58. Ainslie, M.D., Huang, K.Y., Fujishiro, H., Chaddock, J., Takahashi, K., Namba, S., Cardwell, D.A., Durrell, J.H.: Numerical modelling of mechanical stresses in bulk superconductor magnets with and without mechanical reinforcement. Supercond. Sci. Technol. 32(3), 034002 (2019)

    Article  Google Scholar 

  59. Lee, Y.H., Kim, H.O., Kim, Y.J.: Structural Characteristics of a Conical-Frustum-Patterned Stretchable Heater in an External-Force Environment. J. Nanosci. Nanotechno. 18(9), 6606 (2018)

    Article  Google Scholar 

  60. Velamuri, A.V., Patel, K., Sharma, I., Gupta, S.S., Gaikwad, S., Krishnamurthy, P.K.: Investigation of Planar and Helical Bend Losses in Single- and Few-Mode Optical Fibers. J. Lightwave Technol. 37(14), 3544 (2019)

    Article  Google Scholar 

  61. Hammond, C.R., Norman, S.R.: Silica based binary glass systems-refractive index behavior and composition in optical fibers. Opt. Quantum Electron. 9(5), 399 (1977)

    Article  Google Scholar 

  62. Toupin, P., Brilland, L., Méchin, D., Adam, J., Troles, J.: Optical Aging of Chalcogenide Microstructured Optical Fibers. J. Lightwave Technol. 32(13), 2428 (2014)

    Article  Google Scholar 

  63. Rault, G., Adam, J.L., Smektala, F., Lucas, J.: Fluoride glass compositions for waveguide applications. J. Fluorine Chem. 110(2), 165 (2001)

    Article  Google Scholar 

  64. Byun, I., Kim, B.: Fabrication of three-dimensional PDMS microstructures by selective bonding and cohesive mechanical failure. Microelectron. Eng. 121, 92 (2014)

    Article  Google Scholar 

  65. Donlagic, D., Zavrsnik, M.: Fiber-optic microbend sensor structure. Opt. Lett. 22(11), 837 (1997)

    Article  Google Scholar 

  66. Lagakos, N., Cole, J.H., Bucaro, J.A.: Microbend fiber-optic sensor. Appl. Optics 26(11), 2171 (1987)

    Article  Google Scholar 

  67. Mawlud, S.Q., Muhamad, N.Q.: Theoretical and Experimental Study of a Numerical Aperture for Multimode PCS Fiber Optics Using an Imaging Technique. Chin. Phys. Lett. 29(11), 114217 (2012)

    Article  Google Scholar 

  68. Wadsworth, W.J., Percival, R.M., Bouwmans, G., Knight, J.C., Birks, T.A., Hedley, T.D., Russell, P.S.J.: Very high numerical aperture fibers. IEEE Photonics Technol. Lett. 16(3), 843 (2004)

    Article  Google Scholar 

  69. Issa, N.A.: High numerical aperture in multimode microstructured optical fibers. Appl. Optics 43(33), 6191 (2004)

    Article  Google Scholar 

  70. Krishna, B., Chaturvedi, A., Mishra, N., Das, K.: Nanomechanical characterization of SU8/ZnO nanocomposite films for applications in energy-harvesting microsystems. J. Micromech. Microeng. 28(11), 115013 (2018)

    Article  Google Scholar 

  71. Wang, X., Gao, W., Hung, J., Tam, W.Y.: Optical activities of large-area SU8 microspirals fabricated by multibeam holographic lithography. Appl. Optics 53(11), 2425 (2014)

    Article  Google Scholar 

  72. Presby, H.M., Marcuse, D.: Refractive index and diameter determinations of step index optical fibers and preforms. Appl. Optics 13(12), 2882 (1974)

    Article  Google Scholar 

  73. Dunklin, J.R., Forcherio, G.T., Berry, K.R., Roper, D.K.: Gold nanoparticle-polydimethylsiloxane thin films enhance thermoplasmonic dissipation by internal reflection. J. Phys. Chem. C 118(14), 7523 (2014)

    Article  Google Scholar 

  74. Baumert, J., Hoffnagle, J.: Numerical method for the calculation of mode fields and propagation constants in optical waveguides. J. Lightwave Technol. 4(11), 1626 (1986)

    Article  Google Scholar 

  75. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  76. Zhou, D., Huang, W.P., Xu, C.L., Fang, D.G., Chen, B.: The perfectly matched layer boundary condition for scalar finite-difference time-domain method. IEEE Photon. Technol. Lett. 13(5), 454 (2001)

    Article  Google Scholar 

  77. Davidson, D.B., Botha, M.M.: Evaluation of a spherical PML for vector FEM applications. IEEE Trans. Antennas Propag. 55(2), 494 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  78. Selleri, S., Vincetti, L., Cucinotta, A., Zoboli, M.: Complex FEM modal solver of optical waveguides with PML boundary conditions. Opt. Quantum Electron. 33(4), 359 (2001)

    Article  Google Scholar 

  79. Hastings, M.C., Chiu, B., Nippa, D.W.: Engineering the development of optical fiber sensors for adverse environments. Nucl. Eng. Des. 167(3), 239 (1997)

    Article  Google Scholar 

  80. Huang, C., Wang, W., Wu, W., Ledoux, W.R.: Composite optical bend loss sensor for pressure and shear measurement. IEEE Sens. J. 7(11), 1554 (2007)

    Article  Google Scholar 

  81. Jiguet, S., Judelewicz, M., Mischler, S., Bertch, A., Renaud, P.: Effect of filler behavior on nanocomposite SU8 photoresist for moving micro-parts. Microelectron. Eng. 83(4), 1273 (2006)

    Article  Google Scholar 

  82. Viannie, L.R., Jayanth, G.R., Radhakrishna, V., Rajanna, K.: Fabrication and nonlinear thermomechanical analysis of SU8 thermal actuator. J. Microelectromech. Syst. 25(1), 125 (2016)

    Article  Google Scholar 

  83. Tian, Y.T., Shang, X.B., Lancaster, M.J.: Fabrication of multilayered SU8 structure for terahertz waveguide with ultralow transmission loss. J. Micro/Nanolith. MEMS MOEMS 13(1), 013002 (2014)

    Article  Google Scholar 

  84. Yang, M., Wu, X., Li, H., Cui, G., Bai, Z., Wang, L., Kraft, M., Liu, G., Wen, L.: A novel rare cell sorting microfluidic chip based on magnetic nanoparticle labels. J. Micromech. Microeng. 31(3), 034003 (2021)

    Article  Google Scholar 

  85. Kumar, V., Sharma, N.N.: Synthesis of hydrophilic to superhydrophobic SU8 surfaces. J. Appl. Polym. Sci. 132(18), 41934 (2015)

    Article  Google Scholar 

  86. Baibarac, M., Radu, A., Cristea, M., Cercel, R., Smaranda, I.: UV light effect on cationic photopolymerization of the SU8 photoresist and its composites with carbon nanotubes: new evidence shown by photoluminescence studies. J. Phys. Chem. C 124(13), 7467 (2020)

    Article  Google Scholar 

  87. Nordstroem, M., Zauner, D.A., Boisen, A., Huebner, J.: Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications. J. Lightwave Technol. 25(5), 1284 (2007)

    Article  Google Scholar 

  88. Shi, J.H., Wang, Z.P.: Designs of infrared nonpolarizing beam splitters with a Ag layer in a glass cube. Appl. Optics 47(14), 2619 (2008)

    Article  Google Scholar 

  89. Ovchinnikov, Y.B.: A planar waveguide beam splitter. Opt. Commun. 220(4), 229 (2003)

    Article  Google Scholar 

  90. Sibin, K.P., Selvakumar, N., Kumar, A., Dey, A., Sridhara, N., Shashikala, H.D., Sharma, A.K., Barshilia, H.C.: Design and development of ITO/Ag/ITO spectral beam splitter coating for photovoltaic-thermoelectric hybrid systems. Sol. Energy 141, 118 (2017)

    Article  Google Scholar 

  91. Homes, C.C., Carr, G.L., Lobo, R.P.S.M., LaVeigne, J.D., Tanner, D.B.: Silicon beam splitter for far-infrared and terahertz spectroscopy. Appl. Opt. 46(32), 7884 (2007)

    Article  Google Scholar 

  92. Tao, L., Deng, S., Gao, H., Lv, H., Wen, X., Li, M.: Experimental investigation of the dielectric constants of thin noble metallic films using a surface plasmon resonance sensor. Sensors 20(5), 1505 (2020)

    Article  Google Scholar 

  93. Wang, Q., Zhang, Y., Chen, G., Chen, Z., Hee, H.I.: Assessment of Heart Rate and Respiratory Rate for Perioperative Infants Based on ELC Model. IEEE Sens. J. 21(12), 13685 (2021)

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the grant from the Research Grant Council of HKSAR (Grant No. CityU 11210819).

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by Weijia Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vellaisamy A. L. Roy.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., De Souza, M.M., Ghannam, R. et al. A novel micro-scaled multi-layered optical stress sensor for force sensing. J Comput Electron 22, 768–782 (2023). https://doi.org/10.1007/s10825-023-02014-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02014-y

Keywords

Navigation