Skip to main content

A generic simple model of synaptic memristor with local activity for neuromorphic applications

Abstract

A non-volatile locally active memristor is a promising candidate for neuromorphic computing based on artificial synapses and neurons, due to its high-speed switching, strong scalability, high computing, and low power consumption. In this paper, a novel generic model of voltage-controlled memristor with local activity and synaptic behavior is proposed. The circuit design of this memristor is very simple and easy to fabricate. Using small-signal analysis, the behavior of local activity is analyzed for this memristor model. Through the theoretical study, three significant parameters are identified to derive an equivalent circuit (small-signal), which is important for the study on dynamics of this memristor. To check the feasibility of the proposed model, a hardware-based implementation is performed through breadboard analysis. Important fingerprints of this memristor are verified both in theoretically and experimentally. The hardware-based results confirm the non-volatile characteristic and synaptic behavior of this memristor. Several experimental results exhibit a tunable modulation of synaptic weights with pulses, which effectively mimic different bio-synaptic characteristics like potentiation, depression, STDP (Spike-Time-Dependent Plasticity), STP (Short-Term-Plasticity), LTP (Long-Term-Plasticity), learning, forgetting, PPF (Paired-Pulse Facility), and PTP (Post-Tetanic Potentiation).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Data availability

Data will be made available on reasonable request.

References

  1. Yan, X.B., Zhao, J.H., Liu, S., Zhou, Z.Y., Liu, Q., Chen, J.S., Liu, X.Y.: Memristor with ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater. 28(1), 1–9 (2018). https://doi.org/10.1002/adfm.201705320

    Article  Google Scholar 

  2. Xiao, T.P., Bennett, C.H., Feinberg, B., Agarwal, S., Marinella, M.J.: Analog architectures for neural network acceleration based on non-volatile memory. Appl. Phys. Rev. 7(3), 031301 (2020). https://doi.org/10.1063/1.5143815

    Article  Google Scholar 

  3. Chua, L.: Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102(4), 765–783 (2011). https://doi.org/10.1007/s00339-011-6264-9

    Article  MATH  Google Scholar 

  4. Chua, L.: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001 (2014). https://doi.org/10.1088/0268-1242/29/10/104001

    Article  Google Scholar 

  5. ...Wang, Z., Joshi, S., Savel’Ev, S., Song, W., Midya, R., Li, Y., Rao, M., Yan, P., Asapu, S., Zhuo, Y., Jiang, H., Lin, P., Li, C., Yoon, J.H., Upadhyay, N.K., Zhang, J., Hu, M., Strachan, J.P., Barnell, M., Wu, Q., Wu, H., Williams, R.S., Xia, Q., Yang, J.J.: Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1(2), 137–145 (2018). https://doi.org/10.1038/s41928-018-0023-2

    Article  Google Scholar 

  6. Zhang, X., Wu, Z., Lu, J., Wei, J., Lu, J., Zhu, J., Qiu, J., Wang, R., Lou, K., Wang, Y., Shi, T., Dou, C., Shang, D., Liu, Q., Liu, M.: Fully memristive SNNs with temporal coding for fast and low-power edge computing. In: Technical Digest—International Electron Devices Meeting, IEDM 2020-December, 29–612964 (2020). https://doi.org/10.1109/IEDM13553.2020.9371937

  7. Duan, Q., Jing, Z., Zou, X., Wang, Y., Yang, K., Zhang, T., Wu, S., Huang, R., Yang, Y.: Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks. Nat. Commun. 11(1), 1–14 (2020). https://doi.org/10.1038/s41467-020-17215-3

    Article  Google Scholar 

  8. Zhang, X., Zhuo, Y., Luo, Q., Wu, Z., Midya, R., Wang, Z., Song, W., Wang, R., Upadhyay, N.K., Fang, Y., Kiani, F., Rao, M., Yang, Y., Xia, Q., Liu, Q., Liu, M., Yang, J.J.: An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun. 11(1), 1–10 (2020). https://doi.org/10.1038/s41467-019-13827-6

    Article  Google Scholar 

  9. Wu, Z., Lu, J., Shi, T., Zhao, X., Zhang, X., Yang, Y., Wu, F., Li, Y., Liu, Q., Liu, M.: A habituation sensory nervous system with memristors. Adv. Mater. 32(46), 2004398 (2020). https://doi.org/10.1002/adma.202004398

    Article  Google Scholar 

  10. Pershin, Y.V., Di Ventra, M.: Practical approach to programmable analog circuits with memristors. IEEE Transactions on circuits and systems I: Regular papers 57(8), 1857–1864 (2010) https://arxiv.org/abs/0908.3162. https://doi.org/10.1109/TCSI.2009.2038539

  11. Bao, B.C., Xu, J.P., Zhou, G.H., Ma, Z.H., Zou, L.: Chaotic memristive circuit: Equivalent circuit realization and dynamical analysis. Chin. Phys. B 20(12), 120502 (2011). https://doi.org/10.1088/1674-1056/20/12/120502

    Article  Google Scholar 

  12. Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans. Circuit. Syst. I Regul. Pap. 59(1), 148–158 (2012). https://doi.org/10.1109/TCSI.2011.2161360

    Article  MathSciNet  MATH  Google Scholar 

  13. Elwakil, A.S., Fouda, M.E., Radwan, A.G.: A simple model of double-loop hysteresis behavior in memristive elements. IEEE Trans. Circuits Syst. II Express Br. 60(8), 487–491 (2013). https://doi.org/10.1109/TCSII.2013.2268376

    Article  Google Scholar 

  14. Abuelma’Atti, M.T., Khalifa, Z.J.: A new memristor emulator and its application in digital modulation. Analog Integr. Circuits Signal Process. 80(3), 577–584 (2014). https://doi.org/10.1007/s10470-014-0364-3

    Article  Google Scholar 

  15. Yeşil, A., Babacan, Y., Kaçar, F.: A new DDCC based memristor emulator circuit and its applications. Microelectron. J. 45(3), 282–287 (2014). https://doi.org/10.1016/j.mejo.2014.01.011

    Article  Google Scholar 

  16. Koziel, S., Leifsson, L., Couckuyt, I., Dhaene, T.: Fourth order hybrid implicit and explicit FDTD method. Int. J. Numer. Model. 26, 493–505 (2013). https://doi.org/10.1002/jnm

    Article  Google Scholar 

  17. Sánchez-López, C., Carrasco-Aguilar, M.A., Muñiz-Montero, C.: A 16 Hz-160 kHz memristor emulator circuit. AEU Int. J. Electron. Commun. 69(9), 1208–1219 (2015). https://doi.org/10.1016/j.aeue.2015.05.003

    Article  Google Scholar 

  18. Abuelma’Atti, M.T., Khalifa, Z.J.: A continuous-level memristor emulator and its application in a multivibrator circuit. AEU Int. J. Electron. Commun. 69(4), 771–775 (2015). https://doi.org/10.1016/j.aeue.2014.12.011

    Article  Google Scholar 

  19. Yang, C., Choi, H., Park, S., Pd Sah, M., Kim, H., Chua, L.O.: A memristor emulator as a replacement of a real memristor. Semicond. Sci. Technol. 30(1), 15007 (2015). https://doi.org/10.1088/0268-1242/30/1/015007

    Article  Google Scholar 

  20. Wu, R., Wang, C.: A new simple chaotic circuit based on memristor. Int. J. Bifurc. Chaos 26(9), 1–11 (2016). https://doi.org/10.1142/S0218127416501455

    Article  MathSciNet  MATH  Google Scholar 

  21. Sözen, H., Çam, U.: Electronically tunable memristor emulator circuit. Analog Integr. Circuits Signal Process. 89(3), 655–663 (2016). https://doi.org/10.1007/s10470-016-0785-2

    Article  Google Scholar 

  22. Alharbi, A.G., Fouda, M.E., Khalifa, Z.J., Chowdhury, M.H.: Electrical nonlinearity emulation technique for current-controlled memristive devices. IEEE Access 5, 5399–5409 (2017). https://doi.org/10.1109/ACCESS.2017.2695402

    Article  Google Scholar 

  23. Ayten, U.E., Minaei, S., Sağbaş, M.: Memristor emulator circuits using single CBTA. AEU Int. J. Electron. Commun. 82(August), 109–118 (2017). https://doi.org/10.1016/j.aeue.2017.08.008

    Article  Google Scholar 

  24. Sánchez-López, C., Aguila-Cuapio, L.E.: A 860 kHz grounded memristor emulator circuit. AEU Int. J. Electron. Commun. 73, 23–33 (2017). https://doi.org/10.1016/j.aeue.2016.12.015

    Article  Google Scholar 

  25. Babacan, Y., Kaçar, F.: Memristor emulator with spike-timing-dependent-plasticity. AEU Int. J. Electron. Commun. 73, 16–22 (2017). https://doi.org/10.1016/j.aeue.2016.12.025

    Article  Google Scholar 

  26. Li, Z., Zeng, Y., Ma, M.: A novel floating memristor emulator with minimal components. Active Passive Electron. Componen. 2017 (2017). https://doi.org/10.1155/2017/1609787

  27. Thongrak, A., Sitjongsataporn, S., Khunkhao, S., Moungnoul, P. (2019) A practical implementation of memristor emulator circuit based on operational transconductance amplifiers. Int. J. Intell. Eng. Syst. 12(6), 37–46 . https://doi.org/10.22266/ijies2019.1231.04

  28. Yu, D., Zhao, X., Sun, T., Iu, H.H.C., Fernando, T.: A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Trans. Circuits Syst. II Express Br. 67(7), 1334–1338 (2020). https://doi.org/10.1109/TCSII.2019.2936453

    Article  Google Scholar 

  29. Dong, Y., Wang, G., Chen, G., Shen, Y., Ying, J.: A bistable nonvolatile locally-active memristor and its complex dynamics. Commun. Nonlinear Sci. Numer. Simul. 84, 105203 (2020). https://doi.org/10.1016/j.cnsns.2020.105203

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, M., Sun, M., Bao, H., Hu, Y., Bao, B.: Flux-charge analysis of two-memristor-based chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67(3), 2197–2206 (2020). https://doi.org/10.1109/TIE.2019.2907444

    Article  Google Scholar 

  31. Bhardwaj, K., Srivastava, M.: Floating memristor and inverse memristor emulation configurations with electronic/resistance controllability. IET Circuits Devices Syst. 14(7), 1065–1076 (2020). https://doi.org/10.1049/iet-cds.2020.0106

    Article  Google Scholar 

  32. Wang, L., Wang, X., Duan, S., Li, H.: A spintronic memristor bridge synapse circuit and the application in memrisitive cellular automata. Neurocomputing 167, 346–351 (2015). https://doi.org/10.1016/j.neucom.2015.04.061

    Article  Google Scholar 

  33. Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., Prodromakis, T.: Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013). https://doi.org/10.1088/0957-4484/24/38/384010

    Article  Google Scholar 

  34. Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012). https://doi.org/10.1109/JPROC.2011.2166749

    Article  Google Scholar 

  35. Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G.S., Linderman, R.W.: Memristor crossbar-based neuromorphic computing system: A case study. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1864–1878 (2014). https://doi.org/10.1109/TNNLS.2013.2296777

    Article  Google Scholar 

  36. Yao, P., Wu, H., Gao, B., Eryilmaz, S.B., Huang, X., Zhang, W., Zhang, Q., Deng, N., Shi, L., Wong, H.S.P., Qian, H.: Face classification using electronic synapses. Nat. Commun. 8(May), 1–8 (2017). https://doi.org/10.1038/ncomms15199

    Article  Google Scholar 

  37. Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015). https://doi.org/10.1038/nature14441

    Article  Google Scholar 

  38. Bofill-i-Petit, A., Murray, A.F.: Synchrony detection and amplification by silicon neurons with STDP synapses. IEEE Trans. Neural Netw. 15(5), 1296–1304 (2004). https://doi.org/10.1109/TNN.2004.832842

    Article  Google Scholar 

  39. Seo, K., Kim, I., Jung, S., Jo, M., Park, S., Park, J., Shin, J., Biju, K.P., Kong, J., Lee, K., Lee, B., Hwang, H.: Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology 22(25) (2011). https://doi.org/10.1088/0957-4484/22/25/254023

  40. Lai, Q., Zhang, L., Li, Z., Stickle, W.F., Williams, R.S., Chen, Y.: Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Adv. Mater. 22(22), 2448–2453 (2010). https://doi.org/10.1002/adma.201000282

    Article  Google Scholar 

  41. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010). https://doi.org/10.1021/nl904092h

    Article  Google Scholar 

  42. Feldman, D.E.: The spike-timing dependence of plasticity. Neuron 75(4), 556–571 (2012). https://doi.org/10.1016/j.neuron.2012.08.001

    Article  Google Scholar 

  43. Abbott, L.F., Nelson, S.B.: synaptic plasticity: taming the beast. Nat. Neurosci. 3(11s), 1178–1183 (2000). https://doi.org/10.1038/81453

    Article  Google Scholar 

  44. Yu, H., Guo, X., Wang, J., Deng, B., Wei, X.: Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks. Chaos 24(3), 033125 (2014). https://doi.org/10.1063/1.4893773

    Article  MathSciNet  MATH  Google Scholar 

  45. Morl, M., Abegg, M.H., Gähwiler, B.H., Gerber, U.: A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature 431(7007), 453–456 (2004). https://doi.org/10.1038/nature02854

    Article  Google Scholar 

  46. Bliss, T.V.P., Collingridge, G.L.: A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361(6407), 31–39 (1993). https://doi.org/10.1038/361031a0

    Article  Google Scholar 

  47. Daoudal, G., Debanne, D.: Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn. Mem. 10(6), 456–465 (2003). https://doi.org/10.1101/lm.64103

    Article  Google Scholar 

Download references

Funding

The authors declare that no fund is received for this manuscript.

Author information

Authors and Affiliations

Author notes

  1. Pratyusha Nune, Amit Saha and Rajesh Saha have contributed equally.

    Authors

    Corresponding author

    Correspondence to Santanu Mandal.

    Ethics declarations

    Competing Interest

    Authors declares that there is no conflict of interest.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Rights and permissions

    Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Reprints and Permissions

    About this article

    Verify currency and authenticity via CrossMark

    Cite this article

    Nune, P., Mandal, S., Saha, A. et al. A generic simple model of synaptic memristor with local activity for neuromorphic applications. J Comput Electron (2023). https://doi.org/10.1007/s10825-023-02007-x

    Download citation

    • Received:

    • Accepted:

    • Published:

    • DOI: https://doi.org/10.1007/s10825-023-02007-x

    Keywords

    • Artificial synapse
    • Generic memristor (locally active)
    • Modeling
    • Non-volatility
    • Simple circuit design