Abstract
A non-volatile locally active memristor is a promising candidate for neuromorphic computing based on artificial synapses and neurons, due to its high-speed switching, strong scalability, high computing, and low power consumption. In this paper, a novel generic model of voltage-controlled memristor with local activity and synaptic behavior is proposed. The circuit design of this memristor is very simple and easy to fabricate. Using small-signal analysis, the behavior of local activity is analyzed for this memristor model. Through the theoretical study, three significant parameters are identified to derive an equivalent circuit (small-signal), which is important for the study on dynamics of this memristor. To check the feasibility of the proposed model, a hardware-based implementation is performed through breadboard analysis. Important fingerprints of this memristor are verified both in theoretically and experimentally. The hardware-based results confirm the non-volatile characteristic and synaptic behavior of this memristor. Several experimental results exhibit a tunable modulation of synaptic weights with pulses, which effectively mimic different bio-synaptic characteristics like potentiation, depression, STDP (Spike-Time-Dependent Plasticity), STP (Short-Term-Plasticity), LTP (Long-Term-Plasticity), learning, forgetting, PPF (Paired-Pulse Facility), and PTP (Post-Tetanic Potentiation).
This is a preview of subscription content, access via your institution.














Data availability
Data will be made available on reasonable request.
References
Yan, X.B., Zhao, J.H., Liu, S., Zhou, Z.Y., Liu, Q., Chen, J.S., Liu, X.Y.: Memristor with ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater. 28(1), 1–9 (2018). https://doi.org/10.1002/adfm.201705320
Xiao, T.P., Bennett, C.H., Feinberg, B., Agarwal, S., Marinella, M.J.: Analog architectures for neural network acceleration based on non-volatile memory. Appl. Phys. Rev. 7(3), 031301 (2020). https://doi.org/10.1063/1.5143815
Chua, L.: Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102(4), 765–783 (2011). https://doi.org/10.1007/s00339-011-6264-9
Chua, L.: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001 (2014). https://doi.org/10.1088/0268-1242/29/10/104001
...Wang, Z., Joshi, S., Savel’Ev, S., Song, W., Midya, R., Li, Y., Rao, M., Yan, P., Asapu, S., Zhuo, Y., Jiang, H., Lin, P., Li, C., Yoon, J.H., Upadhyay, N.K., Zhang, J., Hu, M., Strachan, J.P., Barnell, M., Wu, Q., Wu, H., Williams, R.S., Xia, Q., Yang, J.J.: Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1(2), 137–145 (2018). https://doi.org/10.1038/s41928-018-0023-2
Zhang, X., Wu, Z., Lu, J., Wei, J., Lu, J., Zhu, J., Qiu, J., Wang, R., Lou, K., Wang, Y., Shi, T., Dou, C., Shang, D., Liu, Q., Liu, M.: Fully memristive SNNs with temporal coding for fast and low-power edge computing. In: Technical Digest—International Electron Devices Meeting, IEDM 2020-December, 29–612964 (2020). https://doi.org/10.1109/IEDM13553.2020.9371937
Duan, Q., Jing, Z., Zou, X., Wang, Y., Yang, K., Zhang, T., Wu, S., Huang, R., Yang, Y.: Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks. Nat. Commun. 11(1), 1–14 (2020). https://doi.org/10.1038/s41467-020-17215-3
Zhang, X., Zhuo, Y., Luo, Q., Wu, Z., Midya, R., Wang, Z., Song, W., Wang, R., Upadhyay, N.K., Fang, Y., Kiani, F., Rao, M., Yang, Y., Xia, Q., Liu, Q., Liu, M., Yang, J.J.: An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun. 11(1), 1–10 (2020). https://doi.org/10.1038/s41467-019-13827-6
Wu, Z., Lu, J., Shi, T., Zhao, X., Zhang, X., Yang, Y., Wu, F., Li, Y., Liu, Q., Liu, M.: A habituation sensory nervous system with memristors. Adv. Mater. 32(46), 2004398 (2020). https://doi.org/10.1002/adma.202004398
Pershin, Y.V., Di Ventra, M.: Practical approach to programmable analog circuits with memristors. IEEE Transactions on circuits and systems I: Regular papers 57(8), 1857–1864 (2010) https://arxiv.org/abs/0908.3162. https://doi.org/10.1109/TCSI.2009.2038539
Bao, B.C., Xu, J.P., Zhou, G.H., Ma, Z.H., Zou, L.: Chaotic memristive circuit: Equivalent circuit realization and dynamical analysis. Chin. Phys. B 20(12), 120502 (2011). https://doi.org/10.1088/1674-1056/20/12/120502
Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans. Circuit. Syst. I Regul. Pap. 59(1), 148–158 (2012). https://doi.org/10.1109/TCSI.2011.2161360
Elwakil, A.S., Fouda, M.E., Radwan, A.G.: A simple model of double-loop hysteresis behavior in memristive elements. IEEE Trans. Circuits Syst. II Express Br. 60(8), 487–491 (2013). https://doi.org/10.1109/TCSII.2013.2268376
Abuelma’Atti, M.T., Khalifa, Z.J.: A new memristor emulator and its application in digital modulation. Analog Integr. Circuits Signal Process. 80(3), 577–584 (2014). https://doi.org/10.1007/s10470-014-0364-3
Yeşil, A., Babacan, Y., Kaçar, F.: A new DDCC based memristor emulator circuit and its applications. Microelectron. J. 45(3), 282–287 (2014). https://doi.org/10.1016/j.mejo.2014.01.011
Koziel, S., Leifsson, L., Couckuyt, I., Dhaene, T.: Fourth order hybrid implicit and explicit FDTD method. Int. J. Numer. Model. 26, 493–505 (2013). https://doi.org/10.1002/jnm
Sánchez-López, C., Carrasco-Aguilar, M.A., Muñiz-Montero, C.: A 16 Hz-160 kHz memristor emulator circuit. AEU Int. J. Electron. Commun. 69(9), 1208–1219 (2015). https://doi.org/10.1016/j.aeue.2015.05.003
Abuelma’Atti, M.T., Khalifa, Z.J.: A continuous-level memristor emulator and its application in a multivibrator circuit. AEU Int. J. Electron. Commun. 69(4), 771–775 (2015). https://doi.org/10.1016/j.aeue.2014.12.011
Yang, C., Choi, H., Park, S., Pd Sah, M., Kim, H., Chua, L.O.: A memristor emulator as a replacement of a real memristor. Semicond. Sci. Technol. 30(1), 15007 (2015). https://doi.org/10.1088/0268-1242/30/1/015007
Wu, R., Wang, C.: A new simple chaotic circuit based on memristor. Int. J. Bifurc. Chaos 26(9), 1–11 (2016). https://doi.org/10.1142/S0218127416501455
Sözen, H., Çam, U.: Electronically tunable memristor emulator circuit. Analog Integr. Circuits Signal Process. 89(3), 655–663 (2016). https://doi.org/10.1007/s10470-016-0785-2
Alharbi, A.G., Fouda, M.E., Khalifa, Z.J., Chowdhury, M.H.: Electrical nonlinearity emulation technique for current-controlled memristive devices. IEEE Access 5, 5399–5409 (2017). https://doi.org/10.1109/ACCESS.2017.2695402
Ayten, U.E., Minaei, S., Sağbaş, M.: Memristor emulator circuits using single CBTA. AEU Int. J. Electron. Commun. 82(August), 109–118 (2017). https://doi.org/10.1016/j.aeue.2017.08.008
Sánchez-López, C., Aguila-Cuapio, L.E.: A 860 kHz grounded memristor emulator circuit. AEU Int. J. Electron. Commun. 73, 23–33 (2017). https://doi.org/10.1016/j.aeue.2016.12.015
Babacan, Y., Kaçar, F.: Memristor emulator with spike-timing-dependent-plasticity. AEU Int. J. Electron. Commun. 73, 16–22 (2017). https://doi.org/10.1016/j.aeue.2016.12.025
Li, Z., Zeng, Y., Ma, M.: A novel floating memristor emulator with minimal components. Active Passive Electron. Componen. 2017 (2017). https://doi.org/10.1155/2017/1609787
Thongrak, A., Sitjongsataporn, S., Khunkhao, S., Moungnoul, P. (2019) A practical implementation of memristor emulator circuit based on operational transconductance amplifiers. Int. J. Intell. Eng. Syst. 12(6), 37–46 . https://doi.org/10.22266/ijies2019.1231.04
Yu, D., Zhao, X., Sun, T., Iu, H.H.C., Fernando, T.: A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Trans. Circuits Syst. II Express Br. 67(7), 1334–1338 (2020). https://doi.org/10.1109/TCSII.2019.2936453
Dong, Y., Wang, G., Chen, G., Shen, Y., Ying, J.: A bistable nonvolatile locally-active memristor and its complex dynamics. Commun. Nonlinear Sci. Numer. Simul. 84, 105203 (2020). https://doi.org/10.1016/j.cnsns.2020.105203
Chen, M., Sun, M., Bao, H., Hu, Y., Bao, B.: Flux-charge analysis of two-memristor-based chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67(3), 2197–2206 (2020). https://doi.org/10.1109/TIE.2019.2907444
Bhardwaj, K., Srivastava, M.: Floating memristor and inverse memristor emulation configurations with electronic/resistance controllability. IET Circuits Devices Syst. 14(7), 1065–1076 (2020). https://doi.org/10.1049/iet-cds.2020.0106
Wang, L., Wang, X., Duan, S., Li, H.: A spintronic memristor bridge synapse circuit and the application in memrisitive cellular automata. Neurocomputing 167, 346–351 (2015). https://doi.org/10.1016/j.neucom.2015.04.061
Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., Prodromakis, T.: Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013). https://doi.org/10.1088/0957-4484/24/38/384010
Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012). https://doi.org/10.1109/JPROC.2011.2166749
Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G.S., Linderman, R.W.: Memristor crossbar-based neuromorphic computing system: A case study. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1864–1878 (2014). https://doi.org/10.1109/TNNLS.2013.2296777
Yao, P., Wu, H., Gao, B., Eryilmaz, S.B., Huang, X., Zhang, W., Zhang, Q., Deng, N., Shi, L., Wong, H.S.P., Qian, H.: Face classification using electronic synapses. Nat. Commun. 8(May), 1–8 (2017). https://doi.org/10.1038/ncomms15199
Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015). https://doi.org/10.1038/nature14441
Bofill-i-Petit, A., Murray, A.F.: Synchrony detection and amplification by silicon neurons with STDP synapses. IEEE Trans. Neural Netw. 15(5), 1296–1304 (2004). https://doi.org/10.1109/TNN.2004.832842
Seo, K., Kim, I., Jung, S., Jo, M., Park, S., Park, J., Shin, J., Biju, K.P., Kong, J., Lee, K., Lee, B., Hwang, H.: Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology 22(25) (2011). https://doi.org/10.1088/0957-4484/22/25/254023
Lai, Q., Zhang, L., Li, Z., Stickle, W.F., Williams, R.S., Chen, Y.: Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Adv. Mater. 22(22), 2448–2453 (2010). https://doi.org/10.1002/adma.201000282
Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010). https://doi.org/10.1021/nl904092h
Feldman, D.E.: The spike-timing dependence of plasticity. Neuron 75(4), 556–571 (2012). https://doi.org/10.1016/j.neuron.2012.08.001
Abbott, L.F., Nelson, S.B.: synaptic plasticity: taming the beast. Nat. Neurosci. 3(11s), 1178–1183 (2000). https://doi.org/10.1038/81453
Yu, H., Guo, X., Wang, J., Deng, B., Wei, X.: Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks. Chaos 24(3), 033125 (2014). https://doi.org/10.1063/1.4893773
Morl, M., Abegg, M.H., Gähwiler, B.H., Gerber, U.: A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature 431(7007), 453–456 (2004). https://doi.org/10.1038/nature02854
Bliss, T.V.P., Collingridge, G.L.: A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361(6407), 31–39 (1993). https://doi.org/10.1038/361031a0
Daoudal, G., Debanne, D.: Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn. Mem. 10(6), 456–465 (2003). https://doi.org/10.1101/lm.64103
Funding
The authors declare that no fund is received for this manuscript.
Author information
Authors and Affiliations
Author notes
Pratyusha Nune, Amit Saha and Rajesh Saha have contributed equally.
Corresponding author
Ethics declarations
Competing Interest
Authors declares that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nune, P., Mandal, S., Saha, A. et al. A generic simple model of synaptic memristor with local activity for neuromorphic applications. J Comput Electron (2023). https://doi.org/10.1007/s10825-023-02007-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10825-023-02007-x
Keywords
- Artificial synapse
- Generic memristor (locally active)
- Modeling
- Non-volatility
- Simple circuit design