Skip to main content
Log in

Broadband mid-infrared supercontinuum generation in AlGaAs photonic crystal fibers by liquid infiltration and rod-filling approaches

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper numerically investigates the supercontinuum generation in a regular dispersion zone (normal + anomalous) and an all-normal dispersion zone in a photonic crystal fiber (PCF). The novelty of this fiber is that both stated dispersion zones are obtained in a single proposed solid-core fiber using the infiltration and rod filling approach by employing the finite element method. This fiber is composed of AlGaAs material in place of conventional fused silica to obtain high nonlinearity over a large wavelength span when a 14 kW peak power, 50 fs initial energy pulse is applied into a 5 mm-long PCF to obtain a spectrum bandwidth of a 10.22 µm region for anomalous dispersion pumping and a 10.05 µm region for all-normal dispersion pumping. These results reveal that the proposed unique structure can be suitable for molecular fingerprinting, medical bio-imaging, and disease detection in the mid-IR window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Russell, P.S.J.: Photonic crystal fibers: Basics and applications. In: Optical Fiber Telecommunications VA, pp. 485–522. Academic Press (2008)

    Chapter  Google Scholar 

  2. Alkeskjold, T.T., Laurila, M., Weirich, J., Johansen, M.M., Olausson, C.B., Lumholt, O., Noordegraaf, D., Maack, M.D., Jakobsen, C.: Photonic crystal fiber amplifiers for high power ultrafast fiber lasers. Nanophotonics 2(5–6), 369–381 (2013)

    Article  Google Scholar 

  3. Almawgani, A.H., Taya, S.A., Daher, M.G., Colak, I., Wu, F., Patel, S.K.: Detection of glucose concentration using a surface plasmon resonance biosensor based on barium titanate layers and molybdenum disulphide sheets. Phys. Scr. 97(6), 065501 (2022)

    Article  Google Scholar 

  4. Kiroriwal, M., Singal, P.: Design and analysis of highly sensitive solid core gold-coated hexagonal photonic crystal fiber sensor based on surface plasmon resonance. J. Nanophotonics 15(2), 026008 (2021)

    Article  Google Scholar 

  5. Taya, S.A., Ramahi, O.M., Abutailkh, M.A., Doghmosh, N., Nassar, Z.M., Upadhyay, A., Colak, I.: Investigation of bandgap properties in one-dimensional binary superconductor–dielectric photonic crystal: TE case. Indian J. Phys. 96(7), 2151–2160 (2022)

    Article  Google Scholar 

  6. Agarwal, G.P.: Nonlinear Fiber Optics, 5th edn. Academic Press (2012)

    Google Scholar 

  7. Saghaei, H., Heidari, V., Ebnali-Heidari, M., Yazdani, M.R.: A systematic study of linear and nonlinear properties of photonic crystal fibers. Optik 127(24), 11938–11947 (2016)

    Article  Google Scholar 

  8. Upadhyay, A., Singh, S., Sharma, D., Taya, S.A.: A highly birefringent bend-insensitive porous core PCF for endlessly single-mode operation in THz regime: an analysis with core porosity. Appl. Nanosci. 11(3), 1021–1030 (2021)

    Article  Google Scholar 

  9. Upadhyay, A., Singh, S., Sharma, D., Taya, S.A.: Analysis of proposed PCF with square air hole for revolutionary high birefringence and nonlinearity. Photonics Nanostruct. Fundam. Appl. 43, 100896 (2021)

    Article  Google Scholar 

  10. Saghaei, H., Ebnali-Heidari, M., Moravvej-Farshi, M.K.: Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers. Appl. Opt. 54(8), 2072–2079 (2015)

    Article  Google Scholar 

  11. Chauhan, P., Kumar, A., Kalra, Y.: Computational modeling of tellurite based photonic crystal fiber for infrared supercontinuum generation. Optik 187, 92–97 (2019)

    Article  Google Scholar 

  12. Bise, R. T. and Trevor, D. J.: Sol-gel derived microstructured fiber: fabrication and characterization. In: Optical Fiber Communication Conference OSA, p. OWL6 (2005)

  13. Zhang, P., Zhang, J., Yang, P., Dai, S., Wang, X., Zhang, W.: Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling. Opt. Fiber Technol. 26, 176–179 (2015)

    Article  Google Scholar 

  14. Vieweg, M., Gissibl, T., Pricking, S., Kuhlmey, B.T., Wu, D.C., Eggleton, B.J., Giessen, H.: Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers. Opt. Exp. 18(24), 25232–25240 (2010)

    Article  Google Scholar 

  15. Kalantari, M., Karimkhani, A., Saghaei, H.: Ultra-wide mid-IR supercontinuum generation in As2S3 photonic crystal fiber by rods filling technique. Optik 158, 142–151 (2018)

    Article  Google Scholar 

  16. Singh, S., Upadhyay, A., Sharma, D., Taya, S.A.: A comprehensive study of large negative dispersion and highly nonlinear perforated core PCF: theoretical insight. Phys. Scr. 97(6), 065504 (2022)

    Article  Google Scholar 

  17. Wadsworth, W.J., Ortigosa-Blanch, A., Knight, J.C., Birks, T.A., Man, T.P.M., Russell, P.S.J.: Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. JOSA B 19(9), 2148–2155 (2002)

    Article  Google Scholar 

  18. Sharafali, A., Nithyanandan, K.: A theoretical study on the supercontinuum generation in a novel suspended liquid core photonic crystal fiber. Appl. Phys. B 126(4), 1–12 (2020)

    Article  Google Scholar 

  19. Ebnali-Heidari, M., Saghaei, H., Koohi-Kamali, F., Moghadasi, M.N., Moravvej-Farshi, M.K.: Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers. IEEE J. Sel. Top. Quantum Electron. 20(5), 582–589 (2014)

    Article  Google Scholar 

  20. Wang, F., Yuan, S.W., Hansen, O., Bang, O.: Selective filling of photonic crystal fibers using focused ion beam milled microchannels”. Opt. Exp. 19(18), 17585–17590 (2011)

    Article  Google Scholar 

  21. Pniewski, J., Stefaniuk, T., Le Van, H., Van, L.C., Kasztelanic, R., Stępniewski, G., Ramaniuk, A., Trippenbach, M., Buczyński, R.: Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids. Appl. Opt. 55(19), 5033–5040 (2016)

    Article  Google Scholar 

  22. Medjouri, A., Abed, D.: Modelling of all-chalcogenide all-normal dispersion photonic crystal fiber for ultraflat mid-infrared supercontinuum generation. Opt. Quantum Electron. 53(7), 1–22 (2021)

    Article  Google Scholar 

  23. Chen, H., Li, S., Ma, M., Liu, Y., Shi, M., Liu, Q., Cheng, T.: Filtering characteristics and applications of photonic crystal fibers being selectively infiltrated with one aluminum rod. J. Light. Technol. 34(21), 4972–4980 (2016)

    Article  Google Scholar 

  24. Sani, E., Dell’Oro, A.: Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared. Opt. Mater. 60, 137–141 (2016)

    Article  Google Scholar 

  25. Van, L.C., Anuszkiewicz, A., Ramaniuk, A., Kasztelanic, R., Xuan, K.D., Trippenbach, M., Buczyński, R.: Supercontinuum generation in photonic crystal fibres with core filled with toluene. J. Opt. 19(12), 125604 (2017)

    Article  Google Scholar 

  26. Van, L.C., Borzycki, K., Xuan, K.D., Quoc, V.T., Trippenbach, M., Buczyński, R., Pniewski, J.: Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene. Laser Phys. 30(3), 035105 (2020)

    Article  Google Scholar 

  27. Upadhyay, A., Singh, S., Sharma, D., Taya, S.A.: An ultra-high birefringent and nonlinear decahedron photonic crystal fiber employing molybdenum disulphide (MoS2): a numerical analysis. Mater. Sci. Eng: B 270, 115236 (2021)

    Article  Google Scholar 

  28. Monfared, Y.E., Ponomarenko, S.A.: Extremely nonlinear carbon-disulfide-filled photonic crystal fiber with controllable dispersion. Opt. Mater. 88, 406–411 (2019)

    Article  Google Scholar 

  29. Li, J.: Refractive indices of liquid crystals and their applications in display and photonic devices Electronic Theses and Dissertations, 2004–2019. 4460 (2005)

  30. Diouf, M., et al.: High power broadband mid-infrared supercontinuum fiber laser using a novel chalcogenide AsSe2 photonic crystal fiber. Opt. Mater. 55, 10–16 (2016)

    Article  Google Scholar 

  31. Salem, A.B., Diouf, M., Cherif, R., Wague, A., Zghal, M.: Ultraflat-top midinfrared coherent broadband supercontinuum using all normal A s2 S 5-borosilicate hybrid photonic crystal fiber. Opt. Eng. 55(6), 066109 (2016)

    Article  Google Scholar 

  32. Kiroriwal, M., Singal, P.: Numerical analysis on the supercontinuum generation through Al0. 24Ga0. 76As based photonic crystal fiber. Sādhanā 46(3), 1–8 (2021)

    Article  Google Scholar 

  33. Siviloglou, G.A., Suntsov, S., El-Ganainy, R., Iwanow, R., Stegeman, G.I., Christodoulides, D.N., Morandotti, R., Modotto, D., Locatelli, A., De Angelis, C., Pozzi, F.: Enhanced third-order nonlinear effects in optical AlGaAs nanowires. Opt. Exp. 14(20), 9377–9384 (2006)

    Article  Google Scholar 

  34. Lacava, C., Pusino, V., Minzioni, P., Sorel, M., Cristiani, I.: Nonlinear properties of AlGaAs waveguides in continuous wave operation regime. Opt. Exp. 22(5), 5291–5298 (2014)

    Article  Google Scholar 

  35. Sharma, M., Dhasarathan, V., Skibina, J.S., Rajan, M.S.M., Konar, S., Hoang, T.T., Ngo, Q.M.: Giant nonlinear AlGaAs-doped glass photonic crystal fibers for efficient soliton generation at femto-joule energy. IEEE Photonics J. 11(4), 1–11 (2019)

    Article  Google Scholar 

  36. Kaminski C. F., Hult J., and Laurila T.: Supercontinuum radiation for optical sensing. In: Conference on Lasers and Electro-Optics, Baltimore, MD, paper CMJ1, 2010

  37. Kim, J.P., Sarangan, A.M.: Temperature-dependent Sellmeier equation for the refractive index of AlxGa1−xAs. Opt. Lett. 32(5), 536–538 (2007)

    Article  Google Scholar 

  38. Kao, Y.H., Islam, M.N., Saylor, J.M., Slusher, R.E., Hobson, W.S.: Raman Effect in AlGaAs waveguides for subpicosecond pulses. J. Appl. Phys. 78(4), 2198–2203 (1995)

    Article  Google Scholar 

  39. Ma, J., Qin, Z., Xie, G., Qian, L., Tang, D.: Review of mid-infrared mode-locked laser sources in the 2.0 μ m–3.5 μ m spectral region. Appl. Phys. Rev. 6(2), 021317 (2019)

    Article  Google Scholar 

  40. Porsezian, K., Raja, R.V.J.: Soliton fission and supercontinuum generation in photonic crystal fiber for optical coherence tomography application. Pramana 85(5), 993–1007 (2015)

    Article  Google Scholar 

  41. Roy, S., Bhadra, S.K., Agrawal, G.P.: Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre. Curr. Sci. 100, 321–342 (2011)

    Google Scholar 

  42. Colley, C.S., Hebden, J.C., Delpy, D.T., Cambrey, A.D., Brown, R.A., Zibik, E.A., Ng, W.H., Wilson, L.R., Cockburn, J.W.: Mid-infrared optical coherence tomography. Rev. Sci. Instrum. 78(12), 123108 (2007)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Kiroriwal.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiroriwal, M., Singal, P. Broadband mid-infrared supercontinuum generation in AlGaAs photonic crystal fibers by liquid infiltration and rod-filling approaches. J Comput Electron 22, 669–676 (2023). https://doi.org/10.1007/s10825-022-02001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-02001-9

Keywords

Navigation