Skip to main content
Log in

PtSe2 and black phosphorus employed for sensitivity improvement in the surface plasmon resonance sensor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The analysis aims to enhance the sensitivity of the surface plasmon resonance-based

sensor. The proposed sensor consists of a single layer of Ag metal, black phosphorus (BP), and Platinum diselenide (PtSe2). The thickness of the Ag metal is considered as 45 nm. The study was carried out using attenuated total reflection. The refractive index of the sensor changes when analyte or biomolecules comes in contact with the sensing layer. The thickness of the BP layer has been taken as 0.34 nm. The maximum sensitivity of the sensor is achieved for one layer of PtSe2 and two layers of BP. The calculated performance parameters, sensitivity, figure of merit, and detection accuracy, are 275.2 \(\mathrm{Degree}/\mathrm{RIU}\), 43.1 \({\mathrm{RIU}}^{-1}\), and 0.16 \({\mathrm{Degree}}^{-1}\), respectively. The sensitivity of the proposed sensor is 1.38 times the conventional sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No data available.

References

  1. Zhang, Y., et al.: Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci. Appl. (2021). https://doi.org/10.1038/s41377-021-00474-0

    Article  Google Scholar 

  2. Zhang, J., Zhang, L., Xu, W.: Surface plasmon polaritons: physics and applications. J. Phys. D. Appl. Phys. (2012). https://doi.org/10.1088/0022-3727/45/11/113001

    Article  Google Scholar 

  3. Kashyap, R., et al.: Enhanced biosensing activity of bimetallic surface plasmon resonance sensor. Photonics (2019). https://doi.org/10.3390/photonics6040108

    Article  Google Scholar 

  4. Purohit, B., Vernekar, P.R., Shetti, N.P., Chandra, P.: Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors Int. (2020). https://doi.org/10.1016/j.sintl.2020.100040

    Article  Google Scholar 

  5. Chen, J., et al.: Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing. IEEE Photon. Technol. Lett. 30(8), 728–731 (2018). https://doi.org/10.1109/LPT.2018.2814216

    Article  Google Scholar 

  6. De Melo, A.A., Da Silva, T.B., Da Silva Santiago, M.F., Da Silva Moreira, C., Cruz, R.M.S.: Theoretical analysis of sensitivity enhancement by graphene usage in optical fiber surface plasmon resonance sensors. IEEE Trans. Instrum. Meas. 68(5), 1554–1560 (2019). https://doi.org/10.1109/TIM.2018.2882148

    Article  Google Scholar 

  7. Hajshahvaladi, L., Kaatuzian, H., Danaie, M.: A high-sensitivity refractive index biosensor based on Si nanorings coupled to plasmonic nanohole arrays for glucose detection in water solution. Opt. Commun. (2022). https://doi.org/10.1016/j.optcom.2021.127421

    Article  Google Scholar 

  8. Karabchevsky, A., Tsapovsky, L., Marks, R.S., Abdulhalim, I.: Study of immobilization procedure on silver nanolayers and detection of estrone with diverged beam surface plasmon resonance (SPR) imaging. Biosensors 3(1), 157–170 (2013). https://doi.org/10.3390/bios3010157

    Article  Google Scholar 

  9. Meshginqalam, B., Barvestani, J.: Performance enhancement of SPR biosensor based on phosphorene and transition metal dichalcogenides for sensing DNA hybridization. IEEE Sens. J. 18(18), 7537–7543 (2018). https://doi.org/10.1109/JSEN.2018.2861829

    Article  Google Scholar 

  10. Wang, Q., Sun, B., Hu, E., Wei, W.: Cu/ITO-coated uncladded fiber-optic biosensor based on surface plasmon resonance. IEEE Photonics Technol. Lett. 31(14), 1159–1162 (2019). https://doi.org/10.1109/LPT.2019.2908288

    Article  Google Scholar 

  11. Pal, A., Jha, A.: A theoretical analysis on sensitivity improvement of an SPR refractive index sensor with graphene and barium titanate nanosheets. Optik (Stuttg) (2021). https://doi.org/10.1016/j.ijleo.2021.166378

    Article  Google Scholar 

  12. Uniyal, A., Chauhan, B., Pal, A., Singh, Y.: Surface plasmon biosensor based on Bi 2 Te 3 antimonene heterostructure for the detection of cancer cells. Appl. Opt. 61(13), 3711–3719 (2022)

    Article  Google Scholar 

  13. Jia, Y., Li, Z., Wang, H., Saeed, M., Cai, H.: Sensitivity enhancement of a surface plasmon resonance sensor with platinum diselenide. Sensors (Switzerland) (2020). https://doi.org/10.3390/s20010131

    Article  Google Scholar 

  14. Xiang, Y., Zhu, J., Wu, L., You, Q., Ruan, B., Dai, X.: Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene. IEEE Photon. J. 10(1), 1–7 (2018). https://doi.org/10.1109/JPHOT.2017.2778245

    Article  Google Scholar 

  15. Rahman, M.S., Anower, M.S., Abdulrazak, L.F.: Modeling of a fiber optic SPR biosensor employing Tin Selenide (SnSe) allotropes. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102623

    Article  Google Scholar 

  16. Nangare, S., Patil, P.: Black phosphorus nanostructure based highly sensitive and selective surface plasmon resonance sensor for biological and chemical sensing: a review. Crit. Rev. Anal. Chem. (2021). https://doi.org/10.1080/10408347.2021.1927669

    Article  Google Scholar 

  17. Yu, H., Peng, Y., Yang, Y., Li, Z.Y.: Plasmon-enhanced light–matter interactions and applications. npj Comput Mater. 5(1), 1–14 (2019). https://doi.org/10.1038/s41524-019-0184-1

    Article  Google Scholar 

  18. Xia, L., Yin, S., Gao, H., Deng, Q., Du, C.: Sensitivity enhancement for surface plasmon resonance imaging biosensor by utilizing gold-silver bimetallic film configuration. Plasmonics 6(2), 245–250 (2011). https://doi.org/10.1007/s11468-010-9195-y

    Article  Google Scholar 

  19. Otto, A.: Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Phys. 216(4), 398–410 (1968). https://doi.org/10.1007/BF01391532

    Article  Google Scholar 

  20. Vasudevan Pillai Radha, S., Santhakumari Amma Ravindran Nair, S.K., Sankaranarayana Iyer, S.: Surface plasmon resonance-based fiber-optic metallic multilayer biosensors. ACS Omega 6(23), 15068–15077 (2021). https://doi.org/10.1021/acsomega.1c01236

    Article  Google Scholar 

  21. Karki, B., Uniyal, A., Chauhan, B., Pal, A.: Sensitivity enhancement of a graphene, zinc sulfide-based surface plasmon resonance biosensor with an Ag metal configuration in the visible region. J. Comput. Electron. (2022). https://doi.org/10.1007/s10825-022-01854-4

    Article  Google Scholar 

  22. Zhang, P., Wang, J., Chen, G., Shen, J., Li, C., Tang, T.: A high-sensitivity spr sensor with bimetal/silicon/two-dimensional material structure: a theoretical analysis. Photonics (2021). https://doi.org/10.3390/photonics8070270

    Article  Google Scholar 

  23. Saifur Rahman, M., Anower, M.S., Bin Bashar, L., Rikta, K.A.: Sensitivity analysis of graphene coated surface plasmon resonance biosensors for biosensing applications. Sens. Bio-Sensing Res. 16, 41–45 (2017). https://doi.org/10.1016/j.sbsr.2017.11.001

    Article  Google Scholar 

  24. Singh, Y., Kumar, M., Sanjeev, P., Raghuwanshi, K.: Sensitivity Enhancement of SPR Sensor with the Black Phosphorus and Graphene with Bi-layer of Gold for Chemical Sensing. Plasmonics (2021). https://doi.org/10.1007/s11468-020-01315-3

    Article  Google Scholar 

  25. Koppens, F.H.L., Chang, D.E., García De Abajo, F.J.: Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 11(8), 3370–3377 (2011). https://doi.org/10.1021/nl201771h

    Article  Google Scholar 

  26. Castellanos-Gomez, A.: Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6(21), 4280–4291 (2015). https://doi.org/10.1021/acs.jpclett.5b01686

    Article  Google Scholar 

  27. Pumera, M.: Phosphorene and black phosphorus for sensing and biosensing. TrAC Trends Anal. Chem. 93, 1–6 (2017). https://doi.org/10.1016/j.trac.2017.05.002

    Article  Google Scholar 

  28. Cen, C., et al.: High quality factor, high sensitivity metamaterial graphene—perfect absorber based on critical coupling theory and impedance matching. Nanomaterials (2020). https://doi.org/10.3390/nano10010095

    Article  Google Scholar 

  29. Singh, S., et al.: 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications. Micromachines 11(8), 1–28 (2020). https://doi.org/10.3390/mi11080779

    Article  Google Scholar 

  30. Y. Cai, G. Zhang, and Y. Zhang, “Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene,” pp. 1–19.

  31. Rahman, M.M., Rana, M.M., Rahman, M.S., Anower, M.S., Mollah, M.A., Paul, A.K.: Sensitivity enhancement of SPR biosensors employing heterostructure of PtSe2 and 2D materials. Opt. Mater. (Amst) 107, 110123 (2020). https://doi.org/10.1016/j.optmat.2020.110123

    Article  Google Scholar 

  32. Fouad, S., Sabri, N., Jamal, Z.A.Z., Poopalan, P.: Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate. J. Nano-Electron. Phys. 8(4), 2–6 (2016). https://doi.org/10.21272/jnep.8(4(2)).04085

    Article  Google Scholar 

  33. Srivastava, T., Jha, R.: Black phosphorus: a new platform for gaseous sensing based on surface plasmon resonance. IEEE Photon. Technol. Lett. 30(4), 319–322 (2018). https://doi.org/10.1109/LPT.2017.2787057

    Article  Google Scholar 

  34. Kumela, A.G., Gemta, A.B., Desta, T.A., Kebede, A.: Noble classical and quantum approach to model the optical properties of metallic nanoparticles to enhance the sensitivity of optoplasmonic sensors. RSC Adv. 12(25), 16203–16214 (2022). https://doi.org/10.1039/d2ra00824f

    Article  Google Scholar 

  35. Wang, Y.Q.Y., et al.: Monolayer PtSe2, a new semiconducting transition-metal- dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 8(15), 4013–4018 (2015). https://doi.org/10.21272/jnep.8(4(2)).04085

    Article  Google Scholar 

  36. Uniyal, A., Chauhan, B., Pal, A., Srivastava, V.: InP and graphene employed surface plasmon resonance sensor for measurement of sucrose concentration : a numerical approach. Opt. Eng. 61(May), 1–13 (2022). https://doi.org/10.1117/1.OE.61.5.057103

    Article  Google Scholar 

  37. Karki, B., Sharma, S., Singh, Y., Pal, A.: Sensitivity enhancement of surface plasmon resonance biosensor with 2-D franckeite nanosheets. Plasmonics 13, 1–16 (2021)

    Google Scholar 

  38. Daher, M.G., Taya, S.A., Colak, I., Patel, S.K., Olaimat, M.M.: Surface plasmon resonance biosensor based on graphene layer for the detection of waterborne bacteria. J. Biophotonics 15(5), 1–9 (2022). https://doi.org/10.1002/jbio.202200001

    Article  Google Scholar 

  39. Karki, B., Pal, A., Singh, Y., Sharma, S.: Sensitivity enhancement of surface plasmon resonance sensor using 2D material barium titanate and black phosphorus over the bimetallic layer of Au, Ag, and Cu. Opt. Commun. (2021). https://doi.org/10.1016/j.optcom.2021.127616

    Article  Google Scholar 

  40. Karki, B., Trabelsi, Y., Uniyal, A., Pal, A.: Zinc sulfide, silicon dioxide, and black phosphorus based ultra-sensitive surface plasmon biosensor. Opt. Quantum Electron. (2022). https://doi.org/10.1007/s11082-021-03480-z

    Article  Google Scholar 

  41. Karki, B., Uniyal, A., Pal, A., Srivastava, V.: Advances in surface plasmon resonance-based biosensor technologies for cancer cell detection. Int. J. Opt. (2022). https://doi.org/10.1016/j.bios.2021.113767

    Article  Google Scholar 

  42. Bhishma Karki, B., Vasudevan, A.U., Pal, A., Srivastava, V.: Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor. Optik 270, 169947 (2022). https://doi.org/10.1016/j.ijleo.2022.169947

    Article  Google Scholar 

  43. Karki, B., Ramya, K.C., Devi, R.S.S., Srivastava, V., Pal, A.: Titanium dioxide, black phosphorus and bimetallic layer-based surface plasmon biosensor for formalin detection: numerical analysis. Opt. Quantum Electron. (2022). https://doi.org/10.1007/s11082-022-03875-6

    Article  Google Scholar 

  44. Kumar, R., Kushwaha, A.S., Srivastava, M., Mishra, H., Srivastava, S.K.: Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (Spr) biosensor. Appl. Phys. A Mater. Sci. Process. 124(3), 1–10 (2018). https://doi.org/10.1007/s00339-018-1606-5

    Article  Google Scholar 

  45. Nurrohman, D.T., Chiu, N.-F.: Surface plasmon resonance biosensor performance analysis on 2D material based on graphene and transition metal dichalcogenides. ECS J. Solid State Sci. Technol. 9(11), 115023 (2020). https://doi.org/10.1149/2162-8777/abb419

    Article  Google Scholar 

  46. Srivastava, A., Prajapati, Y.K.: Performance analysis of silicon and blue phosphorene/mos2 hetero-structure based SPR sensor. Photonic Sensors 9(3), 284–292 (2019). https://doi.org/10.1007/s13320-019-0533-1

    Article  Google Scholar 

  47. Nur, J.N., Hasib, M.H.H., Asrafy, F., Shushama, K.N., Inum, R., Rana, M.M.: Improvement of the performance parameters of the surface plasmon resonance biosensor using Al2O3 and WS2. Opt. Quantum Electron. 51(6), 1–11 (2019). https://doi.org/10.1007/s11082-019-1886-9

    Article  Google Scholar 

  48. Lin, Z., et al.: Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS2-Au films. IEEE Photon. J. (2016). https://doi.org/10.1109/JPHOT.2016.2631407

    Article  Google Scholar 

Download references

Funding

No funding available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhishma Karki.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Ethical approval

Not applicable. The work presented in this manuscript is mathematical modeling only for the proposed biosensor. No experiment was performed on the human body and/or living organism/ animal. So, ethical approval from an ethical committee is not required.

Consent to participate

The author willing to participate in the work presented in this manuscript.

Consent for publication

The author has given their consent to publish this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karki, B., Ansari, G., Uniyal, A. et al. PtSe2 and black phosphorus employed for sensitivity improvement in the surface plasmon resonance sensor. J Comput Electron 22, 106–115 (2023). https://doi.org/10.1007/s10825-022-01975-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01975-w

Keywords

Navigation