Skip to main content
Log in

Numerical study of high-efficiency CIGS solar cells by inserting a BSF µc-Si:H layer

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we present a simulation study of Cu(In,Ga)Se2 (CIGS) based solar cell using a physically based two-dimensional device simulator Silvaco-Atlas under AM1.5 illumination. First, we studied the effect of CIGS layer thickness, doping concentrations, and defects on the J–V properties and the quantum efficiency (QE) of a conventional cell. The simulated structure shows an open circuit voltage equal to 0.80 V, a short circuit current density equal to 30.03 mA/cm2, a fill factor equal to 82.77% and the obtained efficiency of the conventional cell is 19.80% with CIGS absorber layer thickness of about 1.5 μm, our simulation results of the CIGS solar cell are in good agreement with the simulated and experimental results found in literature. In order to improve the solar cells efficiency, the back surface field (BSF) based on hydrogenated microcrystalline silicon μc-Si:H(p+) layer has been inserted between the back contact (Mo) and the CIGS absorber layer, in this case the structure presents an open voltage equal to 0.84 V, a short circuit current density equal to 32.55 mA/cm2, a fill factor equal to 85.31% and an efficiency of 23.42%. The obtained results demonstrate that the addition of μc-Si:H(p+) BSF layer increases the efficiency of CIGS solar cells, reaching a maximum value of 23.42% for 1.5 μm of CIGS thickness and 10 nm for μc-Si:H(p+) BSF layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Guirdjebaye, N., Teyou Ngoupo, A., Ouedraogo, S., Mbopda Tcheum, G.L., Ndjakan, J.M.B.: Numerical analysis of CdS-CIGS interface configuration on the performances of Cu(In, Ga)Se2 solar cells. Chin. J. Phys. 67, 230–237 (2020). https://doi.org/10.1016/j.cjph.2020.02.033

    Article  Google Scholar 

  2. Luque, A., Hegedus, S.: Photovoltaic Science and Engineering. https://doi.org/10.1002/0470014008.

  3. Ghorbani, E., Kiss, J., Mirhosseini, H., Roma, G., Schmidt, M., Windeln, J., Kühne, T.D., Felser C, C.: Hybrid-functional calculations on the incorporation of Na and K impurities in to the CuInSe2 and CuIn5Se8 solar-cell materials. J. Phys. Chem. C 119(45), 25197–25203 (2015). https://doi.org/10.1021/acs.jpcc.5b07639

    Article  Google Scholar 

  4. Biplab, S.R.I., Ali, M.H., Moon, M.M.A., Pervez, M.F., Rahman, M.F., Hossain, J.: Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer. J. Comput. Electron. 19(1), 342–352 (2019). https://doi.org/10.1007/s10825-019-01433-0

    Article  Google Scholar 

  5. Huang, C.H.: Effects of Ga content on Cu(In, Ga)Se2 solar cells studied by numerical modelling. J. Phys. Chem. Solids 69(2–3), 330–334 (2008). https://doi.org/10.1016/j.jpcs.2007.07.093

    Article  Google Scholar 

  6. Wei, S.H., Zhang, S.B., Zunger, A.: Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Appl. Phys. Lett. 72(24), 3199–3201 (1998). https://doi.org/10.1063/1.121548

    Article  Google Scholar 

  7. Gloeckler, M., Sites, J.R.: Band-gap grading in Cu (In, Ga) Se2 solar cells. J. Phys. Chem. Solids 66(11), 1891–1894 (2005). https://doi.org/10.1016/j.jpcs.2005.09.087

    Article  Google Scholar 

  8. Friedlmeier, T.M., Jackson, P., Bauer, A., Hariskos, D., Kiowski, O., Wuerz, R., Powalla, M.: Improved photocurrent in Cu(In, Ga)Se2 solar cells: from 20.8% to 21.7% efficiency with Cds buffer. IEEE J. Photovolt. 5(5), 1487–1491 (2015). https://doi.org/10.1109/JPHOTOV.2015.2458039

    Article  Google Scholar 

  9. Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W., Powalla, M.: Effects of heavy alkali elements in Cu (In, Ga) Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi Rapid Res. Lett. 10(8), 583–586 (2016). https://doi.org/10.1002/pssr.201600199

    Article  Google Scholar 

  10. Goffard, J., Colin, C., Mollica, F., Cattoni, A., Sauvan, C., Lalanne, P., Guillemoles, J.F., Naghavi, N., Collin, S.: Light trapping in ultrathin CIGS solar cells with nanostructured back mirrors. IEEE J. Photovolt. 7(5), 1433–1441 (2017). https://doi.org/10.1109/jphotov.2017.2726566

    Article  Google Scholar 

  11. Ullal, H. S., Zwelbel, K., Von Roedern, B.: Current status of polycrystalline thin-film PV technologies. In: Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997, pp. 301–305. IEEE. https://doi.org/10.1109/pvsc.1997.654089.

  12. Yamaguchi, M.: Radiation resistance of compound semiconductor solar cells. J. Appl. Phys. 78(3), 1476–1480 (1995). https://doi.org/10.1063/1.360236

    Article  Google Scholar 

  13. Afshari, H., Durant, B.K., Brown, C.R., Hossain, K., Poplavskyy, D., Rout, B., Sellers, I.R.: The role of metastability and concentration on the performance of CIGS solar cells under low-intensity-low-temperature conditions. Sol. Energy Mater. Sol. Cells 212, 110571 (2020). https://doi.org/10.1016/j.solmat.2020.110571

    Article  Google Scholar 

  14. Ishizuka, S., Yamada, A., Fons, P., Niki, S.: Flexible Cu(In, Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material. J. Renew. Sustain. Energy 1(1), 013102 (2009). https://doi.org/10.1063/1.3005376

    Article  Google Scholar 

  15. Chirilă, A., Buecheler, S., Pianezzi, F., Bloesch, P., Gretener, C., Uhl, A.R., Kranz, L., Perrenoud, J., Seyrling, S., Verma, S., Nishiwaki, S., Romanyuk, Y.E., Bilger, G., Tiwari, A.N.: Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films. Nat. Mater. 10(11), 857–861 (2011). https://doi.org/10.1038/nmat3122

    Article  Google Scholar 

  16. Kato, T.: Cu(In, Ga)(Se, S)2 solar cell research in solar frontier: progress and current status. Jpn. J. Appl. Phys. 56(4S), 04CA02 (2017). https://doi.org/10.7567/jjap.56.04ca02

    Article  Google Scholar 

  17. Kazmerski, L.L., Hallerdt, M., Ireland, P.J., Mickelsen, R.A., Chen, W.S.: Optical properties and grain boundary effects in CuInSe2. J. Vac. Sci. Technol. A Vac. Surf. Films 1(2), 395–398 (1983). https://doi.org/10.1116/1.571928

    Article  Google Scholar 

  18. Repins, I., Contreras, M., Romero, M., Yan, Y., Metzger, W., Li, J., Noufi, R.: Characterization of 19.9%-efficient CIGS absorbers. In: 2008 33rd IEEE Photovoltaic Specialists Conference, pp. 1–6. IEEE. https://doi.org/10.1109/pvsc.2008.4922628.

  19. Chirilă, A., Reinhard, P., Pianezzi, F., Bloesch, P., Uhl, A.R., Fella, C., Kranz, L., Keller, D., Gretener, C., Hagendorfer, H., Jaeger, D., Erni, R., Nishiwaki, S., Buecheler, S.: Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nat. Mater. 12(12), 1107–1111 (2013). https://doi.org/10.1038/nmat3789

    Article  Google Scholar 

  20. Kato, T., Wu, J., Hirai, Y., Sugimoto, H., Bermudez, V.: Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-Treated Cu(In, Ga) (Se, S). IEEE J. Photovolt. 9(1), 325–330 (2018). https://doi.org/10.1109/jphotov.2018.2882206

    Article  Google Scholar 

  21. Heriche, H., Rouabah, Z., Bouarissa, N.: New ultra thin CIGS structure solar cells using SCAPS simulation program. Int. J. Hyd. Energy 42(15), 9524–9532 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.099

    Article  Google Scholar 

  22. Benabbas, S., Rouabah, Z., Bouarissa, N., Chelali, N.: The role of back surface field SnS layer in improvement of efficiency of CdTe thin film solar cells. Optik Int. J. Light Electron Opt. 127(15), 6210–6217 (2016). https://doi.org/10.1016/j.ijleo.2016.04.050

    Article  Google Scholar 

  23. Cherouana, A., Labbani, R.: Numerical simulation of CZTS solar cell with silicon back surface field. Mater. Today Proc. 5(5), 13795–13799 (2018). https://doi.org/10.1016/j.matpr.2018.02.020

    Article  Google Scholar 

  24. Kim, S., Dao, V.A., Shin, C., Balaji, N., Yi, J.: Influence of n-Doped μc-Si: H back surface field layer with micro growth in Crystalline-amorphous silicon heterojunction solar cells. J. Nanosci. Nanotechnol. 14(12), 9258–9262 (2014). https://doi.org/10.1166/jnn.2014.10123

    Article  Google Scholar 

  25. Rawat, A., Sharma, M., Chaudhary, D., Sudhakar, S., Kumar, S.: Numerical simulations for high efficiency HIT solar cells using microcrystalline silicon as emitter and back surface field (BSF) layers. Sol. Energy 110, 691–703 (2014). https://doi.org/10.1016/j.solener.2014.10.004

    Article  Google Scholar 

  26. Ouédraogo, S., Zougmoré, F., Ndjaka, J.M.B.: Computational analysis of the effect of the surface defect layer (SDL) properties on Cu(In, Ga)Se2-based solar cell performances. J. Phys. Chem. Solids 75(5), 688–695 (2014). https://doi.org/10.1016/j.jpcs.2014.01.010

    Article  Google Scholar 

  27. Pudov, A.O., Kanevce, A., Al-Thani, H.A., Sites, J.R., Hasoon, F.S.: Secondary barriers in CdS–Cu(In1x Gax)Se2 solar cells. J. Appl. Phys. 97(6), 064901 (2005). https://doi.org/10.1063/1.1850604

    Article  Google Scholar 

  28. Bouabdelli, M.W., Rogti, F., Maache, M., Rabehi, A.: Performance enhancement of CIGS thin-film solar cell. Optik 216, 164948 (2020). https://doi.org/10.1016/j.ijleo.2020.164948

    Article  Google Scholar 

  29. Wagner, S., Shay, J.L., Migliorato, P., Kasper, H.M.: CuInSe2/CdS heterojunction photovoltaic detectors. Appl. Phys. Lett. 25(8), 434–435 (1974). https://doi.org/10.1063/1.1655537

    Article  Google Scholar 

  30. Software, D. S. Atlas User's Manual. 567–1000 (2016).

  31. Elbar, M., Tobbeche, S.: Numerical simulation of CGS/CIGS single and tandem thin-film solar cells using the silvaco-atlas software. Energy Proc. 74, 1220–1227 (2015). https://doi.org/10.1016/j.egypro.2015.07.766

    Article  Google Scholar 

  32. Gloeckler, M., Sites, J.R., Metzger, W.K.: Grain-boundary recombination in Cu(In, Ga)Se2 solar cells. J. Appl. Phys. 98(11), 113704 (2005). https://doi.org/10.1063/1.2133906

    Article  Google Scholar 

  33. Mutch, M.J., Pomorski, T., Bittel, B.C., Cochrane, C.J., Lenahan, P.M., Liu, X., Nemanich, R., Brockman, J., French, M., Kuhn, M., French, B., King, S.W.: Band diagram for low-k/Cu interconnects: the starting point for understanding back-end-of-line (BEOL) electrical reliability. Microelectron. Reliab. 63, 201–213 (2016). https://doi.org/10.1016/j.microrel.2016.04.004

    Article  Google Scholar 

  34. Chelvanathan, P., Hossain, M.I., Amin, N.: Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Curr. Appl. Phys. 10(3), 387–391 (2010). https://doi.org/10.1016/j.cap.2010.02.018

    Article  Google Scholar 

  35. Benmir, A., Aida, M.S.: Analytical modeling and simulation of CIGS solar cells. Energy Proc. 36, 618–627 (2013). https://doi.org/10.1016/j.egypro.2013.07.071

    Article  Google Scholar 

  36. Heriche, H., Rouabah, Z., Bouarissa, N.: High-efficiency CIGS solar cells with optimization of layers thickness and doping. Optik Int. J. Light Electron Opt 127(24), 11751–11757 (2016). https://doi.org/10.1016/j.ijleo.2016.09.071

    Article  Google Scholar 

  37. Boudour, S., Bouchama, I., Bouarissa, N., Hadjab, M.: A study of CdTe solar cells using Ga-doped MgxZn1-xO buffer/TCO layers: simulation and performance analysis. J. Sci. Adv. Mater. Dev. 4(1), 111–115 (2019). https://doi.org/10.1016/j.jsamd.2018.12.001

    Article  Google Scholar 

  38. Rougieux, F.E., Sun, C., Macdonald, D.: Determining the charge states and capture mechanisms of defects in silicon through accurate recombination analyses: a review. Sol. Energy Mater. Sol. Cells 187, 263–272 (2018). https://doi.org/10.1016/j.solmat.2018.07.029

    Article  Google Scholar 

  39. Amin, N., Sopian, K., Konagai, M.: Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness. Sol. Energy Mater. Sol. Cells 91(13), 1202–1208 (2007). https://doi.org/10.1016/j.solmat.2007.04.006

    Article  Google Scholar 

  40. Tanaka, K., Oonuki, M., Moritake, N., Uchiki, H.: Cu2ZnSnS4Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Sol. Energy Mater. Sol. Cells 93(5), 583–587 (2009). https://doi.org/10.1016/j.solmat.2008.12.009

    Article  Google Scholar 

  41. Jimbo, K., Kimura, R., Kamimura, T., Yamada, S., Maw, W.S., Araki, H., Katagiri, H.: Cu2ZnSnS4-type thin film solar cells using abundant materials. Thin Solid Films 515(15), 5997–5999 (2007). https://doi.org/10.1016/j.tsf.2006.12.103

    Article  Google Scholar 

  42. Ghorbani, T., Zahedifar, M., Moradi, M., Ghanbari, E.: Influence of affinity band gap and ambient temperature on the efficiency of CIGS solar cells. Optik 223, 165541 (2020). https://doi.org/10.1016/j.ijleo.2020.165541

    Article  Google Scholar 

  43. Ramanathan, K., Contreras, M.A., Perkins, C.L., Asher, S., Hasoon, F.S., Keane, J., Young, D., Romero, M., Metzger, W., Noufi, R., Ward, J., Duda, A.: Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog. Photovolt. Res. Appl. 5, 4 (2003). https://doi.org/10.1002/pip.494

    Article  Google Scholar 

  44. Yang, X., Chen, B., Chen, J., Zhang, Y., Liu, W., Sun, Y.: ZnS thin film functionalized as back surface field in Si solar cells. Mater. Sci. Semicond. Process. (2018). https://doi.org/10.1016/j.mssp.2017.08.011

    Article  Google Scholar 

  45. Kohara, N., Nishiwaki, S., Hashimoto, Y., Negami, T., Wada, T.: Electrical properties of the Cu(In, Ga)Se2/MoSe2 /Mo structure. Sol. Energy Mater. Sol. Cells (2001). https://doi.org/10.1016/S0927-0248(00)00283-X

    Article  Google Scholar 

  46. Fathi, M., Abderrezek, M., Djahli, F., Ayad, M.: Study of thin film solar cells in high temperature condition. Energy Proc. 74, 1410–1417 (2015). https://doi.org/10.1016/j.egypro.2015.07.788

    Article  Google Scholar 

Download references

Funding

This work did not receive any specific give from funding agencies in the public, not for profit sectors, or commercial.

Author information

Authors and Affiliations

Authors

Contributions

RZ: Writing—original draft, Validation, Formal analysis, Software, Writing—review & editing, Resources. IB: Investigation, Supervision, Visualization, Writing—original draft, Software. OS: Formal analysis, Software, Validation, Writing—review & editing. LD: Writing—original draft, Writing—review & editing. EZ: Writing—original draft.

Corresponding author

Correspondence to Rafik Zouache.

Ethics declarations

Conflict of interest

The authors announced that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zouache, R., Bouchama, I., Saidani, O. et al. Numerical study of high-efficiency CIGS solar cells by inserting a BSF µc-Si:H layer. J Comput Electron 21, 1386–1395 (2022). https://doi.org/10.1007/s10825-022-01942-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01942-5

Keywords

Navigation