Skip to main content
Log in

Tunable reverse rectification of layed Janus MSeS (M = Hf, Zr) and SnS2 heterojunctions

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) Janus transition metal dichalcogenides (JTMDs) exhibit suitable band gaps and strong visible light absorption, which are extensively applied to the field of optoelectronic devices. Here, we investigate the electronic properties of 2D JTMDs MSeS (M = Hf, Zr) and SnS2 van der Waals heterojunction through density functional theory. The calculated electronic properties reveal that ZrSeS/SnS2 heterojunction has a type-I band alignment, while HfSeS/SnS2 heterojunction has a type-II band alignment. We build the diodes based on the MSeS (M = Hf, Zr)/SnS2 heterojunctions and study the electronic transport. The currents of the devices exhibit asymmetry, and the negative turn-on voltages suggest that constructed devices are backward diodes. Moreover, it is found that the gate voltage can modulate the rectifying ratio, and the rectifying performance of ZrSeS/SnS2 is better than that of HfSeS/SnS2..

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.-E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  2. Cao, S., Low, J., Yu, J., Jaroniec, M.: Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015)

    Article  Google Scholar 

  3. Zhang, J., Chen, Y., Wang, X.: Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ. Sci. 8, 3092–3108 (2015)

    Article  Google Scholar 

  4. Bao, J., Zhu, L., Wang, H., Han, S., Jin, Y., Zhao, G., Zhu, Y., Guo, X., Hou, J., Yin, H.: Hexagonal boron nitride/blue phosphorene heterostructure as a promising anode material for Li/Na-ion batteries. J. Phys. Chem. C 122, 23329–23335 (2018)

    Article  Google Scholar 

  5. Gorbachev, R.V., Riaz, I., Nair, R.R., Jalil, R., Britnell, L., Belle, B.D., Hill, E.W., Novoselov, K.S., Watanabe, K., Taniguchi, T.: Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011)

    Article  Google Scholar 

  6. Le, P., Mirabbaszadeh, K., Davoudiniya, M., Yarmohammadi, M.: Charged impurity-tuning of midgap states in biased Bernal bilayer black phosphorus: an anisotropic electronic phase transition. Phys. Chem. Chem. Phys. 20, 25044–25051 (2018)

    Article  Google Scholar 

  7. Xiao, Y., Jiang, B., Yang, K., Zhang, T., Fu, L.: Controllable synthesis of two dimensional heterostructures and their application. Chin. Sci. Bull. 62, 2262–2278 (2017)

    Article  Google Scholar 

  8. Huang, L., Huo, N., Li, Y., Chen, H., Yang, J., Wei, Z., Li, J., Li, S.-S.: Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals pn heterostructure. J. Phys. Chem. Lett. 6, 2483–2488 (2015)

    Article  Google Scholar 

  9. Fu, Q., Han, J., Wang, X., Xu, P., Yao, T., Zhong, J., Zhong, W., Liu, S., Gao, T., Zhang, Z.: 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 33, 1907818 (2021)

    Article  Google Scholar 

  10. Zhang, Y., Yao, Y., Sendeku, M.G., Yin, L., Zhan, X., Wang, F., Wang, Z., He, J.: Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 31, 1901694 (2019)

    Article  Google Scholar 

  11. Zhang, X., Teng, S.Y., Loy, A.C.M., How, B.S., Leong, W.D., Tao, X.: Transition metal dichalcogenides for the application of pollution reduction: a review. Nanomaterials 10, 1012 (2020)

    Article  Google Scholar 

  12. Feix, F., Flissikowski, T., Chèze, C., Calarco, R., Grahn, H.T., Brandt, O.: Individual electron and hole localization in submonolayer InN quantum sheets embedded in GaN. Appl. Phys. Lett. 109, 042104 (2016)

    Article  Google Scholar 

  13. Singh, A.K., Zhuang, H.L., Hennig, R.G.: Ab initio synthesis of single-layer III-V materials. Phys. Rev. B 89, 245431 (2014)

    Article  Google Scholar 

  14. Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419–425 (2013)

    Article  Google Scholar 

  15. Zhao, H., Yang, G., Liu, Y., Yang, X., Gu, Y., Wei, C., Xie, Z., Zhang, Q., Bian, B., Zhang, X.: Quantum transport of Sub-10 nm monolayer WGe2N4 transistors. ACS Appl. Electron. Mater. 3, 5086–5094 (2021)

    Article  Google Scholar 

  16. Li, Q., Fang, S., Liu, S., Xu, L., Xu, L., Yang, C., Yang, J., Shi, B., Ma, J., Yang, J., Quhe, R., Lu, J.: Performance limit of ultrathin GaAs transistors. ACS Appl. Mater. Interfaces 14, 23597–23609 (2022)

    Article  Google Scholar 

  17. Um, D.-S., Lee, Y., Lim, S., Park, S., Lee, H., Ko, H.: High-performance MoS2/CuO nanosheet-on-one-dimensional heterojunction photodetectors. ACS Appl. Mater. Interfaces. 8, 33955–33962 (2016)

    Article  Google Scholar 

  18. Duan, J., Chava, P., Ghorbani-Asl, M., Lu, Y., Erb, D., Hu, L., Echresh, A., Rebohle, L., Erbe, A., Krasheninnikov, A.V.: Self-driven broadband photodetectors based on MoSe2/FePS3 van der Waals n–p Type-II heterostructures. ACS Appl. Mater. Interfaces. 14, 11927–11936 (2022)

    Article  Google Scholar 

  19. Varghese, A., Saha, D., Thakar, K., Jindal, V., Ghosh, S., Medhekar, N.V., Ghosh, S., Lodha, S.: Near-direct bandgap WSe2/ReS2 type-II pn heterojunction for enhanced ultrafast photodetection and high-performance photovoltaics. Nano Lett. 20, 1707–1717 (2020)

    Article  Google Scholar 

  20. Pospischil, A., Furchi, M.M., Mueller, T.: Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014)

    Article  Google Scholar 

  21. Guo, Y., Min, J., Cai, X., Zhang, L., Liu, C., Jia, Y.: Two-dimensional type-II BP/MoSi2P4 vdW heterostructures for high-performance solar cells. J. Phys. Chem. C 126, 4677–4683 (2022)

    Article  Google Scholar 

  22. Linghu, J., Yang, T., Luo, Y., Yang, M., Zhou, J., Shen, L., Feng, Y.P.: High-throughput computational screening of vertical 2D van der Waals heterostructures for high-efficiency excitonic solar cells. ACS Appl. Mater. Interfaces. 10, 32142–32150 (2018)

    Article  Google Scholar 

  23. Afzal, A.M., Dastgeer, G., Iqbal, M.Z., Gautam, P., Faisal, M.M.: High-performance p-BP/n-PdSe2 near-infrared photodiodes with a fast and gate-tunable photoresponse. ACS Appl. Mater. Interfaces. 12, 19625–19634 (2020)

    Article  Google Scholar 

  24. Luo, M., Chen, X., Wu, P., Wang, H., Chen, Y., Chen, F., Zhang, L., Chen, X.: Gate-tunable ReS2/MoTe2 heterojunction with high-performance photodetection. Opt. Quant. Electron. 51, 1–10 (2019)

    Article  Google Scholar 

  25. Murali, K., Dandu, M., Das, S., Majumdar, K.: Gate-tunable WSe2/SnSe2 backward diode with ultrahigh-reverse rectification ratio. ACS Appl. Mater. Interfaces. 10, 5657–5664 (2018)

    Article  Google Scholar 

  26. Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014)

    Article  Google Scholar 

  27. Yagmurcukardes, M., Qin, Y., Ozen, S., Sayyad, M., Peeters, F.M., Tongay, S., Sahin, H.: Quantum properties and applications of 2D Janus crystals and their superlattices. Appl. Phys. Rev. 7, 011311 (2020)

    Article  Google Scholar 

  28. Palsgaard, M., Gunst, T., Markussen, T., Thygesen, K.S., Brandbyge, M.: Stacked Janus device concepts: abrupt pn-junctions and cross-plane channels. Nano Lett. 18, 7275–7281 (2018)

    Article  Google Scholar 

  29. Ding, Y., Yang, G., Gu, Y., Yu, Y., Zhang, X., Tang, X., Lu, N., Wang, Y., Dai, Z., Zhao, H.: First-principles predictions of Janus MoSSe and WSSe for FET applications. J. Phys. Chem. C 124, 21197–21206 (2020)

    Article  Google Scholar 

  30. Chaney, G., Ibrahim, A., Ersan, F., Çakır, D., Ataca, C.: Comprehensive study of lithium adsorption and diffusion on Janus Mo/WXY (X, Y= S, Se, Te) using first-principles and machine learning approaches. ACS Appl. Mater. Interfaces. 13, 36388–36406 (2021)

    Article  Google Scholar 

  31. Zhang, J., Jia, S., Kholmanov, I., Dong, L., Er, D., Chen, W., Guo, H., Jin, Z., Shenoy, V.B., Shi, L.: Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192–8198 (2017)

    Article  Google Scholar 

  32. Lu, A.-Y., Zhu, H., Xiao, J., Chuu, C.-P., Han, Y., Chiu, M.-H., Cheng, C.-C., Yang, C.-W., Wei, K.-H., Yang, Y.: Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017)

    Article  Google Scholar 

  33. Xia, C., Xiong, W., Du, J., Wang, T., Peng, Y., Li, J.: Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Phys. Rev. B 98, 165424 (2018)

    Article  Google Scholar 

  34. Zhao, X., Wang, M., Pei, M., Xia, C., Wang, T., Yang, Y., Dai, X., Wei, S.: Electronic properties and controllable Schottky barrier of Janus HfSSe and graphene van der waals heterostructure. Solid State Commun. 344, 114686 (2022)

    Article  Google Scholar 

  35. Nguyen, C.V., Vi, V.T., Phuong, L.T., Hoi, B.D., Hoa, L.T., Hieu, N.N., Phuc, H.V., Khang, P.D.: Electronic structure and band alignment of Blue Phosphorene/Janus ZrSSe heterostructure: a first principles study. Physica E 124, 114369 (2020)

    Article  Google Scholar 

  36. Wen, S., Pan, H., Zheng, Y.: Electronic properties of tin dichalcogenide monolayers and effects of hydrogenation and tension. J. Mater. Chem. C 3, 3714–3721 (2015)

    Article  Google Scholar 

  37. Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorff, J., Schneider, J., Gunst, T., Verstichel, B., Stradi, D., Khomyakov, P.A., Vej-Hansen, U.G.: QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 32, 015901 (2019)

    Article  Google Scholar 

  38. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  39. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  Google Scholar 

  40. Perdew, J., Burke, K., Ernzerhof, M.: Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 80, 891 (1998)

    Article  Google Scholar 

  41. Barhoumi, M., Lazaar, K., Bouzidi, S., Said, M.: A DFT study of Janus structure of S and Se in HfSSe layered as a promising candidate for electronic devices. J. Mol. Graph. Model. 96, 107511 (2020)

    Article  Google Scholar 

  42. Vu, T.V., Tong, H.D., Tran, D.P., Binh, N.T., Nguyen, C.V., Phuc, H.V., Do, H.M., Hieu, N.N.: Electronic and optical properties of Janus ZrSSe by density functional theory. RSC Adv. 9, 41058–41065 (2019)

    Article  Google Scholar 

  43. Liu, J., Hua, E.: High photocatalytic activity of heptazine-based g-C3N4/SnS2 heterojunction and its origin: insights from hybrid DFT. J. Phys. Chem. C 121, 25827–25835 (2017)

    Article  Google Scholar 

  44. Solomon, P.M., Jopling, J., Frank, D.J., D’Emic, C., Dokumaci, O., Ronsheim, P., Haensch, W.: Universal tunneling behavior in technologically relevant P/N junction diodes. J. Appl. Phys. 95, 5800–5812 (2004)

    Article  Google Scholar 

  45. Pawlik, D., Romanczyk, B., Thomas, P., Rommel, S., Edirisooriya, M., Contreras-Guerrero, R., Droopad, R., Loh, W., Wong, M., Majumdar, K.: Benchmarking and improving III-V Esaki diode performance with a record 2.2 MA/cm 2 peak current density to enhance TFET drive current. In: 2012 International Electron Devices Meeting, IEEE, pp. 27.21. 21–27.21. 23 (2012)

  46. Okumura, H., Martin, D., Malinverni, M., Grandjean, N.: Backward diodes using heavily Mg-doped GaN growth by ammonia molecular-beam epitaxy. Appl. Phys. Lett. 108, 072102 (2016)

    Article  Google Scholar 

  47. Roy, T., Tosun, M., Cao, X., Fang, H., Lien, D.-H., Zhao, P., Chen, Y.-Z., Chueh, Y.-L., Guo, J., Javey, A.: Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9, 2071–2079 (2015)

    Article  Google Scholar 

  48. Wu, F., Xia, H., Sun, H., Zhang, J., Gong, F., Wang, Z., Chen, L., Wang, P., Long, M., Wu, X.: AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Adv. Func. Mater. 29, 1900314 (2019)

    Article  Google Scholar 

  49. Liu, X., Qu, D., Li, H.-M., Moon, I., Ahmed, F., Kim, C., Lee, M., Choi, Y., Cho, J.H., Hone, J.C.: Modulation of quantum tunneling via a vertical two-dimensional black phosphorus and molybdenum disulfide p–n junction. ACS Nano 11, 9143–9150 (2017)

    Article  Google Scholar 

  50. Hosseini, S.A., Esfandiar, A., Iraji Zad, A., Hosseini-Shokouh, S.H., Mahdavi, S.M.: High-photoresponsive backward diode by two-dimensional SnS2/Silicon heterostructure. ACS Photon. 6, 728–734 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation Joint Fund Key Project under Grant No. U1865206, National Science and Technology Major Project under Grant No. 2017- VII-0012-0107, Guangdong Province Key Area R&D Program under Grant No. 2019B090909002.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoan Bian.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Jing, S., Chen, W. et al. Tunable reverse rectification of layed Janus MSeS (M = Hf, Zr) and SnS2 heterojunctions. J Comput Electron 21, 1220–1228 (2022). https://doi.org/10.1007/s10825-022-01938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01938-1

Keywords

Navigation