Skip to main content

Advertisement

Log in

DFT calculations of 2D graphene like ZnS:Mn sheet for RESOLFT microscopic applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The reversible saturable optical fluorescence transition (RESOLFT) super-resolution microscopic technique can produce high-resolution images of organic and semiconductor materials by breaking the conventional diffraction limit. In the present paper, we investigate the graphene like zinc sulfide (ZnS) doped with Mn two-dimensional (2D) sheet by using density functional theory computation which is further applied to identify the excitation and depletion laser beam wavelengths for the RESOLFT microscopic applications. The calculated band structure analysis indicates the semiconducting nature of pristine 2D graphene like ZnS with direct energy band gap of 2.60 eV in \(\Gamma\) direction which is consistent with recent reports of the literature. Further, Mn dopant in 2D graphene like ZnS has shown the reduction in the energy band gap in spin up channel and increase in bond lengths adjacent to the dopant in comparison with the undoped ZnS monolayer system. The origin of absorption peak at 2.31 eV is obtained owing to the typical 4T1 and 6A1 spectroscopic transition of Mn dopant in the 2D graphene like ZnS:Mn which is further explored for the RESOLFT measurements by selecting the appropriate excitation and depletion beam wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Chmyrov, A., Keller, J., Grotjohann, T., Ratz, M., Este, E., Jakobs, S., Eggeling, C., Hell, S.W.: Nanoscopy with more than 100,000 ‘doughnuts’. Nat. Methods 10, 739 (2013)

    Article  Google Scholar 

  2. Bretschneider, S., Eggeling, C., Hell, S.W.: Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98, 218103 (2007)

    Article  Google Scholar 

  3. Hell, S.W.: Far-field optical nanoscopy. Science 316, 1153 (2007)

    Article  Google Scholar 

  4. Willig, K.I., Harke, B., Medda, R., Hell, S.W.: STED microscopy with continuous wave beams. Nat. Methods 4, 915 (2007)

    Article  Google Scholar 

  5. Sharma, R., Singh, M., Sharma, R.: Recent advances in STED and RESOLFT super-resolution imaging techniques. Spectrochim. Acta Part A 231, 117715 (2020)

    Article  Google Scholar 

  6. Yu, J.H., Kwon, S.H., Petrasek, Z., Park, O.K., Jun, S.W., Shin, K., Choi, M., Park, Y.I., Park, K., Na, H.B., Lee, N., Lee, D., Kim, J.H., Schwille, P., Hyeon, T.: High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nat. Mater. 12, 359 (2013)

    Article  Google Scholar 

  7. Irvine, S.E., Staudt, T., Rittweger, E., Engelhardt, J., Hell, S.W.: Direct light-driven modulation of luminescence from Mn doped ZnSe quantum dots. Angew. Chem. Int. Ed. 47, 2685 (2008)

    Article  Google Scholar 

  8. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 51 (1976)

    Article  MathSciNet  Google Scholar 

  9. Schroer, P., Kriiger, P., Pollmann, J.: First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS. Phys. Rev. B 12, 6971 (1993)

    Article  Google Scholar 

  10. Sharma, R., Kaur, H., Singh, M.: Recent advances of efficient design of terahertz quantum-cascade lasers. Plasmonics 16, 449 (2020)

    Article  Google Scholar 

  11. Sharma, R., Singh, M., Kaur, H.: Recent advances in high-figure-of-merit semiconductor and organic materials for all-optical switching applications. J. Mater. Sci. 56, 2838 (2021)

    Article  Google Scholar 

  12. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  13. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997)

    Article  Google Scholar 

  14. Klein, A., Tiefenbacher, S., Eyert, V., Pettenkofer, C., Jaegermann, W.: Electronic properties of WS\(_{2}\) monolayer films. Thin Solid Films 380, 221 (2000)

    Article  Google Scholar 

  15. Fukumura, T., Zhengw, J., Kawasaki, M., Shono, T., Hasegawa, T.: Magnetic properties of Mn-doped ZnO. Appl. Phys. Lett. 78, 958 (2001)

    Article  Google Scholar 

  16. Ouyang, M., Huang, J.L., Cheung, C.L., Lieber, C.M.: Energy gaps in “metallic” single-walled carbon nanotubes. Science 292, 702 (2001)

    Article  Google Scholar 

  17. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)

    Article  Google Scholar 

  18. Khenata, R., Bouhemadou, A., Sahnoun, M., Reshak, A.H., Baltache, H., Rabah, M.: Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Comput. Mater. Sci. 38, 29 (2006)

    Article  Google Scholar 

  19. Freeman, C.L., Claeyssens, F., Allan, N.L., Harding, J.H.: Graphitic nanofilms as precursors to wurtzite films: theory. Phys. Rev. Lett. 96, 066102 (2006)

    Article  Google Scholar 

  20. Karazhanov, S.Z., Ravindran, P., Kjekshus, A., Fjellvåg, H., Svensson, B.G.: Electronic structure and optical properties of ZnX (X = O, S, Se, Te): a density functional study. Phys. Rev. B 75, 155104 (2007)

    Article  Google Scholar 

  21. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  22. Sharma, R., Bhatti, H.S.: Photoluminescence decay kinetics of doped ZnS nanophosphors. Nanotechnology 18, 465703 (2007)

    Article  Google Scholar 

  23. Hu, C.-E., Zeng, Z.-Y., Cheng, Y., Chen, X.-R., Cai, L..C..: First-principles calculations for electronic, optical and thermodynamic properties of ZnS. Chin. Phys. B 17, 3867 (2008)

    Article  Google Scholar 

  24. Sharma, R., Bhatti, H.S., Kyhm, K.: Enhanced oscillator strengths and optical parameters of doped ZnS bulk and nanophosphors. Appl. Phys. B 97, 145 (2009)

    Article  Google Scholar 

  25. Topsakal, M., Cahangirov, S., Bekaroglu, E., Ciraci, S.: First-principles study of zinc oxide honeycomb structures. Phys. Rev. B 80, 235119 (2009)

    Article  Google Scholar 

  26. Xie, J.: First-principles study on the magnetism in ZnS-based diluted magnetic semiconductors. J. Magn. Magn. Mater. 322, L37 (2010)

    Article  Google Scholar 

  27. Krainara, N., Limtrakul, J., Illas, F., Bromley, S.T.: Structural and electronic bistability in ZnS single sheets and single-walled nanotubes. Phys. Rev. B 83, 233305 (2011)

    Article  Google Scholar 

  28. Chen, H.: First-principle study on magnetic properties of Mn/Fe codoped ZnS. J. Magn. Magn. Mater. 324, 2086 (2012)

    Article  Google Scholar 

  29. Feng, X.Y., Wang, Z., Zhang, C.W., Wang, P.J.: The electronic and optical properties of indium doped zinc oxide nanosheets. Phys. E Low-Dimens. Syst. Nanostruct 54, 144 (2013)

    Article  Google Scholar 

  30. Ren, J., Zhang, H., Cheng, X.: Electronic and magnetic properties of all 3d transition-metal doped ZnO monolayers. Int. J. Quantum Chem. 113, 2243 (2013)

    Article  Google Scholar 

  31. Rani, P., Dubey, G.S., Jindal, V.K.: DFT study of optical properties of pure and doped graphene. Phys. E Low Dimens. Syst. Nanostruct. 62, 28 (2014)

    Article  Google Scholar 

  32. Behera, H., Mukhopadhyay, G.: Tailoring the structural and electronic properties of a graphene-like ZnS monolayer using biaxial strain. J. Phys. D Appl. Phys. 47, 075302 (2014)

    Article  Google Scholar 

  33. Bagayoko, D.: Understanding density functional theory (DFT) and completing it in practice. AIP Adv. 4, 127104 (2014)

    Article  Google Scholar 

  34. Peng, Q., Han, L., Wen, X., Liu, S., Chen, Z., Lian, J., De, S.: Mechanical properties and stabilities of g-ZnS monolayers. RSC Adv. 5, 11240 (2015)

    Article  Google Scholar 

  35. Bouzidi, C., Naifer, K., Khadraoui, Z., Elhouichet, H., Ferid, M.: Synthesis, characterization and DFT calculations of electronic and optical properties of CaMoO\(_{4}\). Physica B 497, 34 (2016)

    Article  Google Scholar 

  36. Lashgaria, H., Boochanib, A., Shekaaria, S., Solaymanic, S., Sartipib, E., Mendi, R.T.: Electronic and optical properties of 2D graphene-like ZnS:DFT calculations. Appl. Surf. Sci. 369, 76 (2016)

    Article  Google Scholar 

  37. Majidiyan Sarmazdeh, M., et al.: Investigation of the electronic and optical properties of ZnS monolayer nanosheet: first principles calculation. J. Mater. Sci. 6, 3003 (2017)

    Article  Google Scholar 

  38. Sanders, N., Bayerl, D., Shi, G., Mengle, K.A., Kioupakis, E.: Electronic and optical properties of two-dimensional GaN from first principles. Nano Lett. 12, 345 (2017)

    Google Scholar 

  39. Boochani, A., Akhtar, A., Amiri, M., Luna, C., Rai, D.P., Bashiri, S., Molamohammadi, M., Elahi, S.M.: Effects of hydrogen and nitrogen impurities on electronic, structural and optical properties of 2D ZnS graphene based. J. Mater. Sci. 52, 10393 (2017)

    Article  Google Scholar 

  40. Tan, C.L., Cao, X.H., Wu, X.-J., He, Q., Yang, J., Zhang, X., Chen, J., Zhao, W., Han, S., Nam, G.-H., Sindoro, M., Zhang, H.: Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225 (2017)

    Article  Google Scholar 

  41. Rai, D.P., Kaur, S., Srivastava, S.: Band gap modulation of mono and bi-layer hexagonal ZnS under transverse electric field and bi-axial strain: a first principles study. Phys. B Phys. Condens. Matter 531, 90 (2018)

    Article  Google Scholar 

  42. Sangy, D.K., Bo Weny, B., Gao, S., Zeng, Y., Meng, F., Guo, Z., Zhang, H.: Electronic and optical properties of two-dimensional tellurene: from first-principles calculations. Nanomaterials 9, 1075 (2019)

    Article  Google Scholar 

  43. Zhang, G., Amani, M., Chaturvedi, A., Tan, C., Bullock, J., et al.: Optical and electrical properties of two-dimensional palladium diselenide. Appl. Phys. Lett. 114, 253102 (2019)

    Article  Google Scholar 

  44. María, V., Gallegos, C., Luna, R., Peluso, M.A., Damonte, L.C., Sambeth, J.E., Jasen, P.V.: Effect of Mn in ZnO using DFT calculations: magnetic and electronic changes. J. Alloys Compd. 795, 254 (2019)

    Article  Google Scholar 

  45. Jafari, M., Alvani, K.: Effect of doping chromium on electronic and magnetic properties of ZnS monolayer: a DFT study. Mater. Res. Express 6, 0850b5 (2019)

    Article  Google Scholar 

  46. Khan, M.S., et al.: Ab-initio study of optoelectronic and magnetic properties of Mn-doped ZnS with and without vacancy defects. J. Phys. Condens. Matter 31, 485706 (2019)

    Article  Google Scholar 

  47. Khan, M.S., et al.: Optoelectronic and magnetic properties of Mn-doped and Mn-C co-doped Wurtzite ZnS: a first-principles study. J. Phys. Condens. Matter 31, 395702 (2019)

    Article  Google Scholar 

  48. Rodriguez, S., Zandalazini, C., Navarro, J., Vadiraj, K.T., Albanesi, E.A.: First principles calculations and experimental study of the optical properties of Ni-doped ZnS. Mater. Res. Express 7, 016303 (2020)

    Article  Google Scholar 

  49. Ulian, G., Moro, D., Valdre, G.: Thermodynamic and thermoelastic properties of wurtzite-ZnS by density functional theory. Am. Min. 105, 1212 (2020)

    Article  Google Scholar 

  50. Heiba, Z.K., Mohamed, M.B., Shimy, H.E., Badawi, A.: Modifying the electronic and optical properties of nano-ZnS via doping with Mn and Fe. J. Mater. Sci. Mater. Electron. 32, 12358–12370 (2021)

    Article  Google Scholar 

  51. Hinuma, Y., Pizzi, G., Kumagai, Y., Oba, F., Tanaka, I.: Band structure diagram paths based on crystallography. Comput. Mater. Sci. 128, 140 (2017)

    Article  Google Scholar 

  52. Setyawana, W., Curtarolo, S.: High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49, 299 (2010)

    Article  Google Scholar 

  53. Shahrokhi, M.: Quasi-particle energies and optical excitations of ZnS monolayer honeycomb structure. Appl. Surf. Sci. 390, 377 (2016)

    Article  Google Scholar 

  54. Tse, G.: Electronic, optical, elastic, mechanical and vibrational properties of hexagonal h-ZnS with density functional theory. Comput. Condens. Matter 28, e00572 (2021)

    Article  Google Scholar 

  55. Borah, J.P., Sarma, K.C.: Optical and optoelectronic properties of ZnS nanostructured thin film. Acta Phys. Pol. A 114, 713 (2008)

    Article  Google Scholar 

  56. Roy, P., Ota, R., Srivastava, S.K.: Crystalline ZnS thin films by chemical bath deposition method and its characterization. Thin Solid Films 515, 1912 (2006)

    Article  Google Scholar 

  57. Tran, F., Peter Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  Google Scholar 

  58. Bandyopadhyay, A., Jana, D.: A review on role of tetra-rings in graphene systems and their possible applications. Rep. Prog. Phys. 83, 056501 (2020)

    Article  Google Scholar 

  59. Jana, S., Bandyopadhyay, A., Jana, D.: Acetylenic linkage dependent electronic and optical behaviour of morphologically distinct ‘-ynes’. Phys. Chem. Chem. Phys. 21, 13795 (2019)

    Article  Google Scholar 

Download references

Funding

The authors acknowledge financial support of Department of Science and Technology, Government of India for Inspire project Grant Number IF190054.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by RS, RS and AC. The first draft of the manuscript was written by RS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rajesh Sharma.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 206 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Sharma, R. & Chauhan, A. DFT calculations of 2D graphene like ZnS:Mn sheet for RESOLFT microscopic applications. J Comput Electron 21, 1191–1201 (2022). https://doi.org/10.1007/s10825-022-01925-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01925-6

Keywords

Navigation