Skip to main content
Log in

Impacts of material parameters on breakdown voltage and location for power MOSFETs

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

To improve the electrical performance of power devices, materials used in fabrication need to be analyzed and optimized. By numerical simulations, we reveal that the breakdown voltage (BV) and location of a lateral diffused MOS power device simultaneously depend also on trench oxide permittivity. For a given device geometry, while the trench oxide permittivity with a certain value leads to a maximal BV, a smaller (larger) value causes electrical breakdown in the Si drift channel around the bottom (top) of the trench. This trend remains the same when Si is replaced by SiC. Our study implies that any by-product reducing the trench permittivity during trench filling should be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fujishima, N., Sugi, A., Kajiwara, S., Matsubara, K., Nagayasu, Y., Salama, C.A.T.: A high-density low on-resistance trench lateral power MOSFET with a trench bottom source contact. IEEE Trans. Electron Devices 49(8), 1462–1468 (2002)

    Article  Google Scholar 

  2. Luo, X., Fan, J., Wang, Y., Lei, T., Qiao, M., Zhang, B., Udrea, F.: Ultralow specific on-resistance high-voltage SOI lateral MOSFET. IEEE Electron Device Lett. 32(2), 185–187 (2010)

    Article  Google Scholar 

  3. Yue, L., Zhang, B., Li, Z.: A lateral power MOSFET with the double extended trench gate. IEEE Electron Device Lett. 33(8), 1174–1176 (2012)

    Article  Google Scholar 

  4. Shiozawa, K., Oishi, T., Sugihara, K., Furukawa, A., Abe, Y., Tokuda, Y.: Advantage of shallow trench isolation over local oxidation of silicon on alignment tolerance. Jpn. J. Appl. Phys. 38(3A), L234 (1999)

    Article  Google Scholar 

  5. Sze, S.M., Li, Y., Ng, K.K.: Physics of Semiconductor Devices. Wiley, New York (2021)

    Google Scholar 

  6. Volksen, W., Miller, R.D., Dubois, G.: Low dielectric constant materials. Chem. Rev. 110(1), 56–110 (2010)

    Article  Google Scholar 

  7. Wilk, G.D., Wallace, R.M., Anthony, J.: High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89(10), 5243–5275 (2001)

    Article  Google Scholar 

  8. Zhou, K., Luo, X., Li, Z., Zhang, B.: Analytical model and new structure of the variable-k dielectric trench ldmos with improved breakdown voltage and specific ON-resistance. IEEE Trans. Electron Devices 62(10), 3334–3340 (2015)

    Article  Google Scholar 

  9. Guide, S. D. U.: Version M-2016.12. Synopsys. Inc., Mountain View, CA, 49 (2019).

  10. Fischetti, M.V., Vandenberghe, W.G.: Advanced Physics of Electron Transport in Semiconductors and Nanostructures, pp. 361–380. Springer, Cham (2016)

    Book  Google Scholar 

  11. Polsky, B., Penzin, O., Sayed, K.E., Schenk, A., Wettstein, A., Fichtner, W.: On negative differential resistance in hydrodynamic simulation of partially depleted SOI transistors. IEEE Trans. Electron Devices 52(4), 500–506 (2005)

    Article  Google Scholar 

  12. Appels, J.A., Vaes, H.M.J.: High voltage thin layer devices (RESURF devices). In: 1979 International Electron Devices Meeting. IEEE, pp. 238–241 (1979, December).

  13. Bencherif, H., Dehimi, L., Athamena, N.E., et al.: Simulation study of carbon vacancy trapping effect on low power 4H-SiC MOSFET performance. SILICON 13, 3629–3637 (2021). https://doi.org/10.1007/s12633-020-00920-5

    Article  Google Scholar 

  14. Maiti, S., De, A., Sarkar, S.K.: Structural innovation for better MOSFET performance suitable for low power application. SILICON (2021). https://doi.org/10.1007/s12633-021-01390-z

    Article  Google Scholar 

  15. Swami, Y., Rai, S.: Ultra-thin high-K dielectric profile based NBTI compact model for nanoscale bulk MOSFET. SILICON 11, 1661–1671 (2019). https://doi.org/10.1007/s12633-018-9984-z

    Article  Google Scholar 

  16. Banerjee, P., Das, J.: Gate work function engineered trigate MOSFET with a dual-material bottom gate for biosensing applications: a dielectric-modulation based approach. SILICON 14, 419–428 (2022). https://doi.org/10.1007/s12633-020-00823-5

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Young Scholar Fellowship Program from Ministry of Science and Technology, Taiwan, under Grant MOST 110-2636-E-006-004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian-Li Wu or Kuo-Hsing Kao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Lo, CH., Chang, CC. et al. Impacts of material parameters on breakdown voltage and location for power MOSFETs. J Comput Electron 21, 1163–1165 (2022). https://doi.org/10.1007/s10825-022-01920-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01920-x

Keywords

Navigation