Skip to main content

Demonstration of dipole-induced transparency using mirrored split-ring resonator metasurface for microwave applications


In this paper, the Dipole-Induced Transparency (DIT) in the microwave frequency regime is proposed and verified using experimental and simulation studies. A single-layer mirrored Split-Ring Resonator (SRR) array configured in the H excitation scenario is used to create an out-of-phase oscillating electric dipole moment for a normal incident plane wave. The destructive interference between these out-of-phase oscillating electric dipole moments nullifies far-field scattering resulting in the emergence of the transparency window. We used the multipole scattering theory to validate the results computationally. The coupling effects are studied numerically, and the emergence of the transparency window is studied experimentally using transmission measurements inside an anechoic chamber using a vector network analyzer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

Enquiries about data availability should be directed to the authors.


  1. Xu, Q., Sandhu, S., Povinelli, M.L., Shakya, J., Fan, S., Lipson, M.: Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96(12) (2006)

  2. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Article  Google Scholar 

  3. Bajcsy, M., Zibrov, A.S., Lukin, M.D.: Stationary pulses of light in an atomic medium. Nature 426(6967), 638–641 (2003)

    Article  Google Scholar 

  4. Waks, E., Vuckovic, J.: Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 86(15) (2006)

  5. Dong, Z.-G., Liu, H., Cao, J.-X., Li, T., Wang, S.-M., Zhu, S.-N., Zhang, X.: Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials. Appl. Phys. Lett. 97(11) (2010)

  6. Chakrabarti, S., Ramakrishna, S.A., Wanare, H.: Coherently controlling etamaterials. Opt. Exp. 16(24), 19504–19511 (2008)

    Article  Google Scholar 

  7. Liu, N., Langguth, L., Weiss, T., Kastel, J., Fleischhauer, M., Pfau, T., Giessen, H.: Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8(9), 758–762 (2009)

    Article  Google Scholar 

  8. Kim, J., Soref, R., Buchwald, W.R.: Multi-peak electromagnetically induced ransparency (EIT)-like transmission from bull’s-eye shaped metamaterial. Opt. Lett. 19(17), 17997–18002 (2010)

    Google Scholar 

  9. Fedotov, V.A., Rose, M., Prosvirnin, S.L., Papasimakis, N., Zheludev, N.I.: Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007)

    Article  Google Scholar 

  10. Chiam, S.-Y., Singh, R., Rockstuhl, C., Lederer, F., Zhang, W., Bettiol, A.A.: Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys. Rev. B 80, 153103 (2009)

    Article  Google Scholar 

  11. Papasimakis, N., Fedotov, V.A., Zheludev, N.I., Prosvirnin, S.L.: Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett. 101, 253903 (2008)

    Article  Google Scholar 

  12. Bukhari, S.S., Vardaxoglou, J.Y., Whittow, W.: A metasurfaces review: definitions and applications. Appl. Sci. 9(13), 2727 (2019)

    Article  Google Scholar 

  13. Malik, J., Patnaik, A., Kartikeyan, M.V.: Modulated metasurface for circular polarization. In: Proceedings of the Asia-Pacific Microwave Conference (2016)

  14. Pendry, J.B., Holden, A.J., Robbins, D.J.: Magnetism from conductors and enhanced nonlinear phenomena”. IEEE Trans. Microwave Theory Techn. 47(11), 2075–2084 (1999)

    Article  Google Scholar 

  15. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184 (2000)

    Article  Google Scholar 

  16. Alù, A., Engheta, N.: Cloaking a sensor. Phys. Rev. Lett. 102, 233901 (2009)

    Article  Google Scholar 

  17. Shafiei, F., Monticone, F., Le, K.Q., Liu, X.X., Hartsfield, T., Alù, A., Li, X.: A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nature Nanotechnol. 8(2), 95–99 (2013)

    Article  Google Scholar 

  18. Papasimakis, N., Fedotov, V.A., Savinov, V., Raybould, T.A., Zheludev, N.I.: Electromagnetic toroidal excitations in matter and free space. Nat. Mater. 15(3), 263–271 (2016)

    Article  Google Scholar 

  19. Chachayma-Farfan, D.J., Radi, Y., Alù, A.: Dual-layer radio-transparent dielectric core metasurface antenna. IEEE Open J. Antennas Propag. 2, 585–590 (2021)

    Article  Google Scholar 

  20. Edwards, B., Alù, A., Silveirinha, M.G., Engheta, N.: Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett. 103(15), 153901 (2009)

    Article  Google Scholar 

  21. Rizza, C., Matekovits, L.: Numerical investigation on graphene based mantle cloaking of a PEC cylinder. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (2019)

  22. Hamzavi-Zarghani, Z., Yahaghi, A., Matekovits, L.: Electrically tunable mantle cloaking utilizing graphene metasurface for oblique incidence. AEU Int. J. Electron. Commun. 116, 153080 (2020)

    Article  Google Scholar 

Download references


The authors acknowledge the research funding received from the Science and Engineering Research Board (SERB), Department of Science and Technology, for the major research project ECR/2017/002204.


The authors acknowledge the research funding received from the Science and Engineering Research Board (SERB), Department of Science and Technology, for the major research project ECR/2017/002204.

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. P. Sarin.

Ethics declarations

Conflicts of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarin, V.P., Raj, R.K. & Kesavath, V. Demonstration of dipole-induced transparency using mirrored split-ring resonator metasurface for microwave applications. J Comput Electron 21, 826–833 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Dipole-induced transparency
  • Metasurface
  • Spilt-ring resonators