Skip to main content
Log in

Electrical parameter computation of various photovoltaic models using an enhanced jumping spider optimization with chaotic drifts

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

When it comes to identifying the industrial solutions of solar photovoltaic (PV) systems, one of the difficult tasks is predicting the effectiveness of a PV system since the PV, and IV features of a PV system are nonlinear in nature. It is important to evidence that most manufacturers’ specification sheets do not include comprehensive data about the equivalent circuit variables of PV models, which is essential to simulate an accurate solar module. Contrasted to other methods of extracting parameters from solar PV cells/modules, global research methodologies, and metaheuristic optimization algorithms are highly suitable as the main substitute for parameter extraction. Accordingly, this study proposes a new optimization approach for extracting the characteristics of solar PV cells/modules of various models, such as single-diode, double-diode, and module models, while accurately depicting the IV and PV curves. This is accomplished by using a chaotic generator in conjunction with the recently reported jumping spider optimization algorithm (JSOA) to obtain PV parameters from the optimization process. Comparative performance analysis reveals that the suggested optimization method, called CJSOA using a chaotic-based search sequence, performs better than many state-of-the-art optimization algorithms in terms of precision and reliability when identifying the PV parameters, as demonstrated in this paper. With the average Friedman’s ranking test value of 1.397, the proposed CJSOA stood first among all selected algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Goel, S., Sharma, R., Rathore, A.K.: A review on barrier and challenges of electric vehicle in India and vehicle to grid optimisation. Transport. Eng. 4, 100057 (2021). https://doi.org/10.1016/j.treng.2021.100057

    Article  Google Scholar 

  2. Premkumar, M., Sowmya, R.: An effective maximum power point tracker for partially shaded solar photovoltaic systems. Energy Rep. 5, 1445–1462 (2019). https://doi.org/10.1016/j.egyr.2019.10.006

    Article  Google Scholar 

  3. Premkumar, M., Karthick, K., Sowmya, R.: A review on solar PV based grid connected microinverter control schemes and topologies. Int. J. Renew. Energy Dev. 7, 171 (2018). https://doi.org/10.14710/ijred.7.2.171-182

    Article  Google Scholar 

  4. Renewable energy market update—analysis-IEA. https://www.iea.org/reports/renewable-energy-market-update

  5. Hussin, F., Issabayeva, G., Aroua, M.K.: Solar photovoltaic applications: opportunities and challenges. Rev. Chem. Eng. 34, 503–528 (2018). https://doi.org/10.1515/REVCE-2016-0058

    Article  Google Scholar 

  6. Singh, G.K.: Solar power generation by PV (photovoltaic) technology: a review. Energy 53, 1–13 (2013). https://doi.org/10.1016/j.energy.2013.02.057

    Article  Google Scholar 

  7. Aslani, A., Helo, P., Feng, B., Antila, E., Hiltunen, E.: Renewable energy supply chain in Ostrobothnia region and Vaasa city: innovative framework. Renew. Sustain. Energy Rev. 23, 405–411 (2013). https://doi.org/10.1016/J.RSER.2013.03.012

    Article  Google Scholar 

  8. Almosni, S., Delamarre, A., Jehl, Z., Suchet, D., Cojocaru, L., Giteau, M., Behaghel, B., Julian, A., Ibrahim, C., Tatry, L., Wang, H., Kubo, T., Uchida, S., Segawa, H., Miyashita, N., Tamaki, R., Shoji, Y., Yoshida, K., Ahsan, N., Watanabe, K., Inoue, T., Sugiyama, M., Nakano, Y., Hamamura, T., Toupance, T., Olivier, C., Chambon, S., Vignau, L., Geffroy, C., Cloutet, E., Hadziioannou, G., Cavassilas, N., Rale, P., Cattoni, A., Collin, S., Gibelli, F., Paire, M., Lombez, L., Aureau, D., Bouttemy, M., Etcheberry, A., Okada, Y., Guillemoles, J.-F.: Material challenges for solar cells in the twenty-first century: directions in emerging technologies. Sci. Technol. Adv. Mater. 19, 336–369 (2018). https://doi.org/10.1080/14686996.2018.1433439

    Article  Google Scholar 

  9. Mehrjerdi, H., Rakhshani, E.: Vehicle-to-grid technology for cost reduction and uncertainty management integrated with solar power. J. Clean. Prod. 229, 463–469 (2019). https://doi.org/10.1016/J.JCLEPRO.2019.05.023

    Article  Google Scholar 

  10. Manoharan, P., Subramaniam, U., Babu, T.S., Padmanaban, S., Holm-Nielsen, J.B., Mitolo, M., Ravichandran, S.: Improved perturb & observation maximum power point tracking technique for solar photovoltaic power generation systems. IEEE Syst. J. (2020). https://doi.org/10.1109/JSYST.2020.3003255

    Article  Google Scholar 

  11. Premkumar, M., Subramaniam, U., Babu, T.S., Elavarasan, R.M., Mihet-Popa, L.: Evaluation of mathematical model to characterize the performance of conventional and hybrid PV array topologies under static and dynamic shading patterns. Energies 13, 3216 (2020). https://doi.org/10.3390/EN13123216

    Article  Google Scholar 

  12. Yahiaoui, A., Fodhil, F., Benmansour, K., Tadjine, M., Cheggaga, N.: Grey wolf optimizer for optimal design of hybrid renewable energy system PV-diesel generator-battery: application to the case of Djanet city of Algeria. Sol. Energy 158, 941–951 (2017). https://doi.org/10.1016/J.SOLENER.2017.10.040

    Article  Google Scholar 

  13. Gnetchejo, P.J., Essiane, S.N., Ele, P., Wamkeue, R., Wapet, D.M., Ngoffe, S.P.: Enhanced vibrating particles system algorithm for parameters estimation of photovoltaic system. J. Power Energy Eng. (2019). https://doi.org/10.4236/jpee.2019.78001

    Article  Google Scholar 

  14. Mohamed, N., Alrahim, A., Yahaya, N.Z., Singh, B.: Single-diode model and two-diode model of PV modules: a comparison. In: 2013 IEEE International Conference on Control System, Computing and Engineering, pp. 210–214 (2013)

  15. Xiao, W.B., Liu, W.Q., Wu, H.M., Zhang, H.M.: Review of parameter extraction methods for single-diode model of solar cell. Wuli Xuebao/Acta Physica Sinica. (2018). https://doi.org/10.7498/aps.67.20181024

    Article  Google Scholar 

  16. Premkumar, M., Sowmya, R., Umashankar, S., Pradeep, J.: An effective solar photovoltaic module parameter estimation technique for single-diode model. In: IOP Conference Series: Materials Science and Engineering (2020)

  17. Batzelis, E.I., Papathanassiou, S.A.: A method for the analytical extraction of the single-diode PV model parameters. IEEE Trans. Sustain. Energy 7, 504–512 (2016). https://doi.org/10.1109/TSTE.2015.2503435

    Article  Google Scholar 

  18. Soliman, M.A., Hasanien, H.M.: Marine predators algorithm for parameters identification of triple-diode photovoltaic models. IEEE Access 8, 155832 (2020). https://doi.org/10.1109/ACCESS.2020.3019244

    Article  Google Scholar 

  19. Qais, M.H., Hasanien, H.M., Alghuwainem, S.: Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization. Energy 195, 117040 (2020). https://doi.org/10.1016/j.energy.2020.117040

    Article  Google Scholar 

  20. Kumar, C., Mary, D.M.: Parameter estimation of three-diode solar photovoltaic model using an improved-African vultures optimization algorithm with Newton-Raphson method. J. Comput. Electron. 2021, 1–31 (2021). https://doi.org/10.1007/S10825-021-01812-6

    Article  Google Scholar 

  21. Premkumar, M., Sowmya, R., Umashankar, S., Jangir, P.: Extraction of uncertain parameters of single-diode photovoltaic module using hybrid particle swarm optimization and grey wolf optimization algorithm. Mater. Today Proc. 46, 5315–5321 (2021). https://doi.org/10.1016/J.MATPR.2020.08.784

    Article  Google Scholar 

  22. Nayak, B., Mohapatra, A., Mohanty, K.B.: Parameter estimation of single diode PV module based on GWO algorithm. Renew. Energy Focus 30, 1–12 (2019). https://doi.org/10.1016/j.ref.2019.04.003

    Article  Google Scholar 

  23. Babu, B.C., Gurjar, S.: A novel simplified two-diode model of photovoltaic (PV) module. IEEE J. Photovolt. 4, 1156–1161 (2014). https://doi.org/10.1109/JPHOTOV.2014.2316371

    Article  Google Scholar 

  24. Ćalasan, M., Jovanović, D., Rubežić, V., Mujović, S., Dukanović, S.: Estimation of single-diode and two-diode solar cell parameters by using a chaotic optimization approach. Energies (Basel) (2019). https://doi.org/10.3390/en12214209

    Article  Google Scholar 

  25. Romero, B., del Pozo, G., Arredondo, B.: Exact analytical solution of a two diode circuit model for organic solar cells showing S-shape using Lambert W-functions. Sol. Energy 86, 3026–3029 (2012). https://doi.org/10.1016/j.solener.2012.07.010

    Article  Google Scholar 

  26. Qais, M.H., Hasanien, H.M., Alghuwainem, S., Nouh, A.S.: Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules. Energy 187, 116001 (2019). https://doi.org/10.1016/j.energy.2019.116001

    Article  Google Scholar 

  27. Ridha, H.M., Hizam, H., Gomes, C., Heidari, A.A., Chen, H., Ahmadipour, M., Muhsen, D.H., Alghrairi, M.: Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method. Energy 224, 120136 (2021). https://doi.org/10.1016/j.energy.2021.120136

    Article  Google Scholar 

  28. Muhsen, D.H., Ghazali, A.B., Khatib, T., Abed, I.A.: A comparative study of evolutionary algorithms and adapting control parameters for estimating the parameters of a single-diode photovoltaic module’s model. Renew. Energy 96, 377–389 (2016). https://doi.org/10.1016/J.RENENE.2016.04.072

    Article  Google Scholar 

  29. Jordehi, A.R.: Parameter estimation of solar photovoltaic (PV) cells : a review. Renew. Sustain. Energy Rev. 61, 354–371 (2016). https://doi.org/10.1016/j.rser.2016.03.049

    Article  Google Scholar 

  30. Hu, Z., Gong, W., Li, S.: Reinforcement learning-based differential evolution for parameters extraction of photovoltaic models. Energy Rep. 7, 916–928 (2021)

    Article  Google Scholar 

  31. Appelbaum, J., Peled, A.: Parameters extraction of solar cells—a comparative examination of three methods. Solar Energy Mater. Sol. Cells (2014). https://doi.org/10.1016/j.solmat.2013.11.011

    Article  Google Scholar 

  32. Gul, M., Kotak, Y., Muneer, T.: Review on recent trend of solar photovoltaic technology. Energy Explor. Explot. 34, 485–526 (2016). https://doi.org/10.1177/0144598716650552

    Article  Google Scholar 

  33. Humada, A.M., Hojabri, M., Mekhilef, S., Hamada, H.M.: Solar cell parameters extraction based on single and double-diode models: a review. Renew. Sustain. Energy Rev. 56, 494–509 (2016). https://doi.org/10.1016/j.rser.2015.11.051

    Article  Google Scholar 

  34. Reis, L.R.D., Camacho, J.R., Novacki, D.F.: The newton raphson method in the extraction of parameters of PV modules. Renew. Energy Power Qual. J. (2017). https://doi.org/10.24084/repqj15.416

    Article  Google Scholar 

  35. Kanimozhi, G.: Harish Kumar: modeling of solar cell under different conditions by ant lion optimizer with Lambert W function. Appl. Soft Comput. Journal. 71, 141–151 (2018). https://doi.org/10.1016/j.asoc.2018.06.025

    Article  Google Scholar 

  36. Wu, H., Peng, L.: A maximum power point detection method for photovoltaic module based on Lambert W function. Math. Problems Eng. (2018). https://doi.org/10.1155/2018/8082960

    Article  Google Scholar 

  37. Obiora, V., Saha, C., Bazi, A.A., Guha, K.: Optimisation of solar photovoltaic (PV) parameters using meta-heuristics. Microsyst. Technol. 27, 3161–3169 (2021). https://doi.org/10.1007/S00542-020-05066-3

    Article  Google Scholar 

  38. Obiora, V., Saha, C., Bazi, A.A., Guha, K.: Optimisation of solar photovoltaic (PV) parameters using meta-heuristics. Microsyst. Technol. 27(8), 3161–3169 (2020). https://doi.org/10.1007/S00542-020-05066-3

    Article  Google Scholar 

  39. Oliva, D., Elaziz, M.A., Elsheikh, A.H., Ewees, A.A.: A review on meta-heuristics methods for estimating parameters of solar cells. J. Power Sources 435, 126683 (2019). https://doi.org/10.1016/J.JPOWSOUR.2019.05.089

    Article  Google Scholar 

  40. Franco, R.A.P., Vieira, F.H.T.: Analytical method for extraction of the single-diode model parameters for photovoltaic panels from datasheet data. Electron. Lett. 54, 519–521 (2018). https://doi.org/10.1049/EL.2018.0402

    Article  Google Scholar 

  41. Toledo, F.J., Blanes, J.M.: Analytical and quasi-explicit four arbitrary point method for extraction of solar cell single-diode model parameters. Renew. Energy 92, 346–356 (2016). https://doi.org/10.1016/J.RENENE.2016.02.012

    Article  Google Scholar 

  42. Subudhi, B., Pradhan, R.: Bacterial foraging optimization approach to parameter extraction of a photovoltaic module. IEEE Trans. Sustain. Energy 9, 381–389 (2018). https://doi.org/10.1109/TSTE.2017.2736060

    Article  Google Scholar 

  43. Javier Toledo, F., Blanes, J.M., Galiano, V.: Two-step linear least-squares method for photovoltaic single-diode model parameters extraction. IEEE Trans. Ind. Electron. 65, 6301–6308 (2018). https://doi.org/10.1109/TIE.2018.2793216

    Article  Google Scholar 

  44. Caracciolo, F., Dallago, E., Finarelli, D.G., Liberale, A., Merhej, P.: Single-variable optimization method for evaluating solar cell and solar module parameters. IEEE J. Photovolt. 2, 173–180 (2012). https://doi.org/10.1109/JPHOTOV.2011.2182181

    Article  Google Scholar 

  45. Benayad, A., Berrah, S.: InGaN/GaN tandem solar cell parameter estimation: a comparative stud. Turk. J. Electric. Eng. Comput. Sci. 27, 1896–1907 (2019)

    Article  Google Scholar 

  46. Wu, Z., Yu, D., Kang, X.: Parameter identification of photovoltaic cell model based on improved ant lion optimizer. Energy Convers. Manag. 151, 107–115 (2017). https://doi.org/10.1016/j.enconman.2017.08.088

    Article  Google Scholar 

  47. Mathew, D., Rani, C., Kumar, M.R., Wang, Y., Binns, R., Busawon, K.: Wind-driven optimization technique for estimation of solar photovoltaic parameters. IEEE J. Photovolt. (2018). https://doi.org/10.1109/JPHOTOV.2017.2769000

    Article  Google Scholar 

  48. Oliva, D., Cuevas, E., Pajares, G.: Parameter identification of solar cells using artificial bee colony optimization. Energy 72, 93–102 (2014). https://doi.org/10.1016/j.energy.2014.05.011

    Article  Google Scholar 

  49. Chen, X., Xu, B., Mei, C., Ding, Y., Li, K.: Teaching–learning-based artificial bee colony for solar photovoltaic parameter estimation. Appl. Energy 212, 1578–1588 (2018). https://doi.org/10.1016/j.apenergy.2017.12.115

    Article  Google Scholar 

  50. Li, S., Gong, W., Yan, X., Hu, C., Bai, D., Wang, L., Gao, L.: Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization. Energy Convers. Manag. 186, 293–305 (2019). https://doi.org/10.1016/j.enconman.2019.02.048

    Article  Google Scholar 

  51. Liao, Z., Chen, Z., Li, S.: Parameters extraction of photovoltaic models using triple-phase teaching-learning-based optimization. IEEE Access 8, 69937–69952 (2020). https://doi.org/10.1109/ACCESS.2020.2984728

    Article  Google Scholar 

  52. Yu, K., Chen, X., Wang, X., Wang, Z.: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization. Energy Convers. Manag. 145, 233–246 (2017). https://doi.org/10.1016/j.enconman.2017.04.054

    Article  Google Scholar 

  53. Chen, X., Yu, K.: Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters. Sol. Energy 180, 192–206 (2019). https://doi.org/10.1016/j.solener.2019.01.025

    Article  Google Scholar 

  54. Niu, Q., Zhang, L., Li, K.: A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells. Energy Convers. Manag. 86, 1173–1185 (2014). https://doi.org/10.1016/j.enconman.2014.06.026

    Article  Google Scholar 

  55. Pratap Chandran, B., Immanuel Selvakumar, A., Shine Let, G., Paul Sathiyan, S.: Optimal model parameter estimation of solar and fuel cells using improved estimation of distribution algorithm. Ain Shams Eng. J. 12, 1693–1700 (2021). https://doi.org/10.1016/J.ASEJ.2020.07.034

    Article  Google Scholar 

  56. Abido, M.A., Khalid, M.S.: Seven-parameter PV model estimation using differential evolution. Electr. Eng. 100, 971–981 (2018). https://doi.org/10.1007/s00202-017-0542-2

    Article  Google Scholar 

  57. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 26, 29–41 (1996). https://doi.org/10.1109/3477.484436

    Article  Google Scholar 

  58. Guo, L., Meng, Z., Sun, Y., Wang, L.: Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm. Energy Convers. Manag. 108, 520–528 (2016). https://doi.org/10.1016/j.enconman.2015.11.041

    Article  Google Scholar 

  59. Ma, J., Ting, T.O., Man, K.L., Zhang, N., Guan, S.U., Wong, P.W.H.: Parameter estimation of photovoltaic models via cuckoo search. J. Appl. Math. 2013, 10–12 (2013). https://doi.org/10.1155/2013/362619

    Article  MathSciNet  Google Scholar 

  60. Kang, T., Yao, J., Jin, M., Yang, S., Duong, T.: A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (PV) models. Energies (Basel) 11, 1060 (2018). https://doi.org/10.3390/en11051060

    Article  Google Scholar 

  61. Lekouaghet, B., Boukabou, A., Boubakir, C.: Estimation of the photovoltaic cells/modules parameters using an improved Rao-based chaotic optimization technique. Energy Convers. Manag. (2021). https://doi.org/10.1016/j.enconman.2020.113722

    Article  Google Scholar 

  62. Premkumar, M., Sudhakar, T., Umashankar, S., Sowmya, R.: A new metaphor-less algorithms for the photovoltaic cell parameter estimation. Optik. Int. J. Light Electron Opt. 208, 164559 (2020). https://doi.org/10.1016/j.ijleo.2020.164559

    Article  Google Scholar 

  63. Saxena, A., Sharma, A., Shekhawat, S.: Parameter extraction of solar cell using intelligent grey wolf optimizer. Evol. Intel. (2020). https://doi.org/10.1007/s12065-020-00499-1

    Article  Google Scholar 

  64. Premkumar, M., Jangir, P., SanthoshKumar, B., Alqudah, M., SooppyNisar, K.: Multi-objective grey wolf optimization algorithm for solving real-world BLDC motor design problem. Comput. Mater. Continua 70, 2435–2452 (2022). https://doi.org/10.32604/CMC.2022.016488

    Article  Google Scholar 

  65. Premkumar, M., Jangir, P., Sowmya, R., Elavarasan, R.M., Kumar, B.S.: Enhanced chaotic JAYA algorithm for parameter estimation of photovoltaic cell/modules. ISA Trans. 116, 139–166 (2021). https://doi.org/10.1016/j.isatra.2021.01.045

    Article  Google Scholar 

  66. Jian, X., Weng, Z.: A logistic chaotic JAYA algorithm for parameters identification of photovoltaic cell and module models. Optik (Stuttg) 203, 164041 (2020). https://doi.org/10.1016/j.ijleo.2019.164041

    Article  Google Scholar 

  67. Yu, K., Qu, B., Yue, C., Ge, S., Chen, X., Liang, J.: A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Appl. Energy. (2019). https://doi.org/10.1016/j.apenergy.2019.01.008

    Article  Google Scholar 

  68. Premkumar, M., Sowmya, R., Jangir, P., Siva Kumar, J.S.V.: A new and reliable objective functions for extracting the unknown parameters of solar photovoltaic cell using political optimizer algorithm. In: 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy, ICDABI 2020 (2020)

  69. Premkumar, M., Sowmya, R., Jangir, P., Haes Alhelou, H., Heidari, A.A.: Huling Chen: MOSMA: multi-objective slime mould algorithm based on elitist non-dominated sorting. IEEE Access 9, 3229–3248 (2021). https://doi.org/10.1109/ACCESS.2020.3047936

    Article  Google Scholar 

  70. Kumar, C., Raj, T.D., Premkumar, M., Raj, T.D.: A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters. Optik (Stuttg). 223, 165277 (2020). https://doi.org/10.1016/j.ijleo.2020.165277

    Article  Google Scholar 

  71. Abdollahzadeh, B., Soleimanian Gharehchopogh, F., Mirjalili, S.: Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 36, 5887–5958 (2021). https://doi.org/10.1002/INT.22535

    Article  Google Scholar 

  72. Rabehi, A., Nail, B., Helal, H., Douara, A., Ziane, A., Amrani, M., Akkal, B., Benamara, Z.: Optimal estimation of Schottky diode parameters using a novel optimization algorithm: equilibrium optimizer. Superlattices Microstruct. (2020). https://doi.org/10.1016/j.spmi.2020.106665

    Article  Google Scholar 

  73. Premkumar, M., Jangir, P., Sowmya, R., Alhelou, H.H., Mirjalili, S., Kumar, B.S.: Multi-objective equilibrium optimizer: framework and development for solving multi-objective optimization problems. J. Comput. Des. Eng. 9, 24–50 (2022). https://doi.org/10.1093/JCDE/QWAB065

    Article  Google Scholar 

  74. Houssein, E.H., Helmy, B.E., Oliva, D., Jangir, P., Premkumar, M., Elngar, A.A., Shaban, H.: An efficient multi-thresholding based COVID-19 CT images segmentation approach using an improved equilibrium optimizer. Biomed. Signal Process. Control. 73, 103401 (2022). https://doi.org/10.1016/J.BSPC.2021.103401

    Article  Google Scholar 

  75. Ahmadianfar, I., Gong, W., Heidari, A.A., Golilarz, N.A., Samadi-Koucheksaraee, A., Chen, H.: Gradient-based optimization with ranking mechanisms for parameter identification of photovoltaic systems. Energy Rep. 7, 3979–3997 (2021)

    Article  Google Scholar 

  76. Premkumar, M., Jangir, P., Sowmya, R.: MOGBO: a new multiobjective gradient-based optimizer for real-world structural optimization problems. Knowl. Based Syst. 218, 106856 (2021). https://doi.org/10.1016/j.knosys.2021.106856

    Article  Google Scholar 

  77. Premkumar, M., Jangir, P., Sowmya, R., Elavarasan, R.M.: Many-objective gradient-based optimizer to solve optimal power flow problems: analysis and validations. Eng. Appl. Artif. Intell. 106, 104479 (2021). https://doi.org/10.1016/J.ENGAPPAI.2021.104479

    Article  Google Scholar 

  78. Premkumar, M., Jangir, P., Ramakrishnan, C., Nalinipriya, G., Alhelou, H.H., Kumar, B.S.: Identification of solar photovoltaic model parameters using an improved gradient-based optimization algorithm with chaotic drifts. IEEE Access 9, 62347–62379 (2021). https://doi.org/10.1109/ACCESS.2021.3073821

    Article  Google Scholar 

  79. Manjula Devi, R., Premkumar, M., Jangir, P., Santhosh Kumar, B., Alrowaili, D., Sooppy Nisar, K.: BHGSO: binary hunger games search optimization algorithm for feature selection problem. Comput. Mater. Continua 70, 557–579 (2022). https://doi.org/10.32604/CMC.2022.019611

    Article  Google Scholar 

  80. Jangir, P., Buch, H., Mirjalili, S., Manoharan, P.: MOMPA: multi-objective marine predator algorithm for solving multi-objective optimization problems. Evol. Intel. 2021, 1–27 (2021). https://doi.org/10.1007/S12065-021-00649-Z

    Article  Google Scholar 

  81. Jadoun, V.K., Sharma, N., Jha, P., Jayalakshmi, N.S., Malik, H., GarciaMárquez, F.P.: Optimal scheduling of dynamic pricing based V2G and G2V operation in microgrid using improved elephant herding optimization. Sustainability 13, 7551 (2021). https://doi.org/10.3390/SU13147551

    Article  Google Scholar 

  82. Oliva, D., Abd El Aziz, M., Ella Hassanien, A.: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl. Energy 200, 141–154 (2017). https://doi.org/10.1016/j.apenergy.2017.05.029

    Article  Google Scholar 

  83. Premkumar, M., Sumithira, R.: Humpback whale assisted hybrid maximum power point tracking algorithm for partially shaded solar photovoltaic systems. J. Power Electron. 18, 1805–1818 (2018). https://doi.org/10.6113/JPE.2018.18.6.1805

    Article  Google Scholar 

  84. Al-Betar, M.A., Alyasseri, Z.A.A., Awadallah, M.A., Abu Doush, I.: Coronavirus herd immunity optimizer (CHIO). Neural Comput. Appl. 33, 5011–5042 (2020). https://doi.org/10.1007/S00521-020-05296-6

    Article  Google Scholar 

  85. Yan, S., Yang, P., Zhu, D., Zheng, W., Wu, F.: Improved sparrow search algorithm based on iterative local search. Comput. Intell. Neurosci. (2021). https://doi.org/10.1155/2021/6860503

    Article  Google Scholar 

  86. Premkumar, M., Jangir, P., Santhosh Kumar, B., Sowmya, R., Haes Alhelou, H., Abualigah, L., Riza Yildiz, A., Mirjalili, S.: A new arithmetic optimization algorithm for solving real-world multiobjective CEC-2021 constrained optimization problems: diversity analysis and validations. IEEE Access 9, 84263–84295 (2021). https://doi.org/10.1109/ACCESS.2021.3085529

    Article  Google Scholar 

  87. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., Gandomi, A.H.: The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. (2021). https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  MATH  Google Scholar 

  88. Nasri, D., Mokeddem, D., Bourouba, B.: Estimation of photovoltaic cells parameters using chaos embedded salp swarm algorithm. Int. J. Intell. Eng. Syst. (2020). https://doi.org/10.22266/ijies2020.1231.10

    Article  Google Scholar 

  89. Premkumar, M., Kumar, C., Sowmya, R., Pradeep, J.: A novel salp swarm assisted hybrid maximum power point tracking algorithm for the solar photovoltaic power generation systems. Automatika (2021). https://doi.org/10.1080/00051144.2020.1834062

    Article  Google Scholar 

  90. Shaheen, M.A.M., Hasanien, H.M., Alkuhayli, A.: A novel hybrid GWO-PSO optimization technique for optimal reactive power dispatch problem solution. Ain Shams Eng. J. (2020). https://doi.org/10.1016/j.asej.2020.07.011

    Article  Google Scholar 

  91. Devi, R.M., Premkumar, M., Jangir, P., Elkotb, M.A., Elavarasan, R.M., Nisar, K.S.: IRKO: an improved Runge-Kutta optimization algorithm for global optimization problems. Comput. Mater. Continua 70, 4803–4827 (2022). https://doi.org/10.32604/CMC.2022.020847

    Article  Google Scholar 

  92. Abdelminaam, D.S., Said, M., Houssein, E.H.: Turbulent flow of water-based optimization using new objective function for parameter extraction of six photovoltaic models. IEEE Access 9, 35382–35398 (2021). https://doi.org/10.1109/ACCESS.2021.3061529

    Article  Google Scholar 

  93. Jiao, S., Chong, G., Huang, C., Hu, H., Wang, M., Asghar, A., Chen, H., Zhao, X.: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models. Energy 203, 117804 (2020). https://doi.org/10.1016/j.energy.2020.117804

    Article  Google Scholar 

  94. Diab, A.A.Z., Sultan, H.M., Do, T.D., Kamel, O.M., Mossa, M.A.: Coyote optimization algorithm for parameters estimation of various models of solar cells and PV modules. IEEE Access 8, 111102–111140 (2020). https://doi.org/10.1109/ACCESS.2020.3000770

    Article  Google Scholar 

  95. Diab, A.A.Z., Sultan, H.M., Aljendy, R., Al-Sumaiti, A.S., Shoyama, M., Ali, Z.M.: Tree growth based optimization algorithm for parameter extraction of different models of photovoltaic cells and modules. IEEE Access 8, 119668–119687 (2020). https://doi.org/10.1109/ACCESS.2020.3005236

    Article  Google Scholar 

  96. Selem, S.I., El-Fergany, A.A., Hasanien, H.M.: Artificial electric field algorithm to extract nine parameters of triple-diode photovoltaic model. Int. J. Energy Res. 45, 590–604 (2021). https://doi.org/10.1002/ER.5756

    Article  Google Scholar 

  97. Shaheen, A.M., Ginidi, A.R., El-Sehiemy, R.A., Ghoneim, S.S.M.: A forensic-based investigation algorithm for parameter extraction of solar cell models. IEEE Access 9, 1–20 (2021). https://doi.org/10.1109/ACCESS.2020.3046536

    Article  Google Scholar 

  98. Houssein, E.H., Zaki, G.N., Diab, A.A.Z., Younis, E.M.G.: An efficient Manta Ray foraging optimization algorithm for parameter extraction of three-diode photovoltaic model. Comput. Electr. Eng. 94, 107304 (2021). https://doi.org/10.1016/J.COMPELECENG.2021.107304

    Article  Google Scholar 

  99. Montano, J., Tobón, A.F., Villegas, J.P., Durango, M.: Grasshopper optimization algorithm for parameter estimation of photovoltaic modules based on the single diode model. Int. J. Energy Environ. Eng. 11, 367–375 (2020). https://doi.org/10.1007/s40095-020-00342-4

    Article  Google Scholar 

  100. Qais, M.H., Hasanien, H.M., Alghuwainem, S.: Transient search optimization: a new meta-heuristic optimization algorithm. Appl. Intell. (2020). https://doi.org/10.1007/s10489-020-01727-y

    Article  Google Scholar 

  101. Irudayaraj, A.X.R., Wahab, N.I.A., Premkumar, M., Radzi, M.A.M., Sulaiman, N., Veerasamy, V., Farade, R.A., Islam, M.Z.: Renewable sources-based automatic load frequency control of interconnected systems using chaotic atom search optimization. Appl. Soft Comput. (2022). https://doi.org/10.1016/J.ASOC.2022.108574

    Article  Google Scholar 

  102. Khasanov, M., Kamel, S., Tostado-Véliz, M., Jurado, F.: Allocation of photovoltaic and wind turbine based DG units using artificial ecosystem-based optimization. In: 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I CPS Europe). p. 1–5 (2020)

  103. Wei, T., Yu, F., Huang, G., Xu, C.: A particle-swarm-optimization-based parameter extraction routine for three-diode lumped parameter model of organic solar cells. IEEE Electron Dev. Lett. 40, 1511–1514 (2019). https://doi.org/10.1109/LED.2019.2926315

    Article  Google Scholar 

  104. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

  105. Peraza-Vázquez, H., Peña-Delgado, A., Ranjan, P., Barde, C., Choubey, A., Morales-Cepeda, A.B.: A bio-inspired method for mathematical optimization inspired by arachnida salticidade. Mathematics 10, 102 (2021). https://doi.org/10.3390/MATH10010102

    Article  Google Scholar 

  106. Premkumar, M., Kumar, C., Sowmya, R.: Mathematical modelling of solar photovoltaic cell/panel/array based on the physical parameters from the manufacturer’s datasheet. Int. J. Renew. Energy Dev. 9, 7–22 (2020). https://doi.org/10.14710/ijred.9.1.7-22

    Article  Google Scholar 

  107. Ayang, A., Wamkeue, R., Ouhrouche, M., Djongyang, N., Essiane Salomé, N., Pombe, J.K., Ekemb, G.: Maximum likelihood parameters estimation of single-diode model of photovoltaic generator. Renew. Energy (2019). https://doi.org/10.1016/j.renene.2018.06.039

    Article  Google Scholar 

  108. Ćalasan, M., Jovanović, D., Rubežić, V., Mujović, S., Dukanović, S.: Estimation of single-diode and two-diode solar cell parameters by using a chaotic optimization approach. Energies 12, 4209 (2019). https://doi.org/10.3390/EN12214209

    Article  Google Scholar 

  109. Sandrolini, L., Artioli, M., Reggiani, U.: Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis. Appl. Energy 87, 442–451 (2010). https://doi.org/10.1016/j.apenergy.2009.07.022

    Article  Google Scholar 

  110. Ćalasan, M., Abdel Aleem, S.H.E., Zobaa, A.F.: On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Convers. Manag. 210, 112716 (2020). https://doi.org/10.1016/j.enconman.2020.112716

    Article  Google Scholar 

  111. Dehkordi, A.A., Sadiq, A.S., Mirjalili, S., Ghafoor, K.Z.: Nonlinear-based Chaotic Harris Hawks optimizer: algorithm and internet of vehicles application. Appl. Soft Comput. (2021). https://doi.org/10.1016/j.asoc.2021.107574

    Article  Google Scholar 

  112. Chen, H., Jiao, S., Wang, M., Heidari, A.A., Zhao, X.: Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. J. Clean. Prod. 244, 118778 (2020). https://doi.org/10.1016/j.jclepro.2019.118778

    Article  Google Scholar 

  113. Mousa, A.A., El-Shorbagy, M.A., Mustafa, I., Alotaibi, H.: Chaotic search based equilibrium optimizer for dealing with nonlinear programming and petrochemical application. Processes (2021). https://doi.org/10.3390/pr9020200

    Article  Google Scholar 

  114. Premkumar, M., Jangir, P., Sowmya, R., Elavarasan, R.M., Santosh Kumar, B.: Enhanced chaotic JAYA algorithm for parameter estimation of photovoltaic cell/modules. ISA Trans. 116, 139–166 (2021). https://doi.org/10.1016/j.isatra.2021.01.045

    Article  Google Scholar 

Download references

Funding

The authors declare that there is no funding for conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmanan Muthuramalingam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuramalingam, L., Chandrasekaran, K. & Xavier, F.J. Electrical parameter computation of various photovoltaic models using an enhanced jumping spider optimization with chaotic drifts. J Comput Electron 21, 905–941 (2022). https://doi.org/10.1007/s10825-022-01891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01891-z

Keywords

Navigation