Skip to main content
Log in

Outstanding tunable electrical and optical characteristics in monolayer silicene at high terahertz frequencies

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

A Correction to this article was published on 12 January 2023

This article has been updated

Abstract

Silicene, a zero-bandgap semimetallic advanced material, has received much attention due to its extraordinary electronic and optical characteristics, enabling its use in plasmonic nano-devices. This material is able to be tuned without degrading its high carrier mobility. In this work, by applying rigorous numerical techniques, the optical and electrical properties of silicene at high terahertz frequencies are calculated. Under the influence of environmental effects including the Fermi level, temperature, and external electric field, the optical conductivity and refractive index of silicene are investigated using the tight-binding model. The effects of the Fermi level from 0 to 1 eV, the external electric field from 0 to 2.5 \({\text{V}}/{\dot{\text{A}}}\), and temperature from 5 to 400 K are investigated with respect to the optical properties of silicene. One of the interesting features of silicene is its adjustable bandgap, which we present here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be available whenever a researcher requests access to the data.

Change history

References

  1. Allen, M.J., Tung, V.C., Kane, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010)

    Article  Google Scholar 

  2. Grigorenko, A.N., Polini, M., Novoselov, K.S.: Graphene plasmonics. Nat. Photonics 6(11), 749–758 (2012)

    Article  Google Scholar 

  3. Kara, A., et al.: A review on silicene—new candidate for electronics. Surf. Sci. Rep. 67(1), 1–18 (2012)

    Article  Google Scholar 

  4. Dávila, M.E., et al.: Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16(9), 095002 (2014)

    Article  Google Scholar 

  5. Jia, J.: Epitaxial growth of two-dimensional stanene. APS 2016, C28-007 (2016)

    Google Scholar 

  6. Carvalho, A., et al.: Phosphorene: from theory to applications. Nat. Rev. Mater. 1(11), 1–16 (2016)

    Article  Google Scholar 

  7. Zhang, K., et al.: Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5(46), 11992–12022 (2017)

    Article  Google Scholar 

  8. Kumar, V., Rajput, K., Roy, D.R.: Electric field-induced band modulation of predicted ternary 2D MXC3 [M: X= As: Ge, Sb: Sn and Bi: Pb] with strong stability and optical properties. Carbon 172, 791–803 (2021)

    Article  Google Scholar 

  9. Kumar, V., Dey, A., Thomas, S., Zaeem, M.A., Roy, D.R.: Hydrogen-induced tunable electronic and optical properties of a two-dimensional penta-Pt 2 N 4 monolayer. Phys. Chem. Chem. Phys. 23(17), 10409–10417 (2021)

    Article  Google Scholar 

  10. Kumar, V., Roy, D.R.: Strain-induced band modulation and excellent stability, transport and optical properties of penta-MP 2 (M = Ni, Pd, and Pt) monolayers. Nanoscale Adv. 2(10), 4566–4580 (2020)

    Article  Google Scholar 

  11. Zhao, J., et al.: Rise of silicene: a competitive 2D material. Prog. Mater Sci. 83, 24–151 (2016)

    Article  Google Scholar 

  12. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)

    Article  MathSciNet  Google Scholar 

  13. Landau, L.D.: Zur Theorie der phase numwandlungen II. Phys. Z. Sowjetunion 11(545), 26–35 (1937)

    Google Scholar 

  14. Mermin, N.D.: Crystalline order in two dimensions. Phys. Rev. 176(1), 250 (1968)

    Article  Google Scholar 

  15. Fagan, S.B., et al.: Ab initio calculations for a hypothetical material: silicon nanotubes. Phys. Rev. B 61(15), 9994 (2000)

    Article  Google Scholar 

  16. Takeda, K., Shiraishi, K.: Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50(20), 14916 (1994)

    Article  Google Scholar 

  17. Leandri, C., et al.: Self-aligned silicon quantum wires on Ag (1 1 0). Surf. Sci. 574(1), L9–L15 (2005)

    Article  Google Scholar 

  18. Guzmán-Verri, G.G., Voon, L.C.L.Y.: Electronic structure of silicon-based nanostructures. Phys. Rev. B 76(7), 075131 (2007)

    Article  Google Scholar 

  19. Le Lay, G.: Silicene transistors. Nat. Nanotechnol. 10(3), 202–203 (2015)

    Article  Google Scholar 

  20. Liu, C.-C., Feng, W., Yao, Y.: Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107(7), 076802 (2011)

    Article  Google Scholar 

  21. Liu, H., Gao, J., Zhao, J.: Silicene on substrates: a way to preserve or tune its electronic properties. J. Phys. Chem. C 117(20), 10353–10359 (2013)

    Article  Google Scholar 

  22. Mahatha, S.K., et al.: Silicene on Ag (111): a honeycomb lattice without Dirac bands. Phys. Rev. B 89(20), 201416 (2014)

    Article  Google Scholar 

  23. Lei, M., et al.: Fabrication and properties of silicene and silicene–graphene layered structures on Ir (111). Chin. Phys. B 24(8), 086803 (2015)

    Article  Google Scholar 

  24. Aizawa, T., Suehara, S., Otani, S.: Phonon dispersion of silicene on ZrB2 (0 0 0 1). J. Phys. Condens. Matter 27(30), 305002 (2015)

    Article  Google Scholar 

  25. Gori, P., et al.: Honeycomb silicon on alumina: Massless Dirac fermions in silicene on substrate. Phys. Rev. B 100(24), 245413 (2019)

    Article  Google Scholar 

  26. Hamid, M.A.B., et al.: Structural, electronic and transport properties of silicene on graphene substrate. Mater. Res. Express 6(5), 055803 (2019)

    Article  Google Scholar 

  27. Zhang, R., et al.: Silicane as an inert substrate of silicene: a promising candidate for FET. J. Phys. Chem. C 118(43), 25278–25283 (2014)

    Article  Google Scholar 

  28. Chowdhury, S., Jana, D.: A theoretical review on electronic, magnetic and optical properties of silicene. Rep. Progress Phys. 79(12), 126501 (2016)

    Article  Google Scholar 

  29. Zhao, Y., et al.: Effects of 48 defects and external electric field on the electronic properties of silicene nanoribbons. Mater. Res. Express 4(8), 085035 (2017)

    Article  Google Scholar 

  30. Abdelsalam, H., et al.: Stability and electronic properties of edge functionalized silicene quantum dots: a first principles study. Physica E 108, 339–346 (2019)

    Article  Google Scholar 

  31. Tao, L., et al.: Encapsulated silicene field-effect transistors. In: Vogt, P., Le Lay, G. (eds.) Silicene, pp. 235–254. Springer, Cham (2018)

    Chapter  Google Scholar 

  32. Akinwande, D.: Room temperature silicene field-effect transistors. APS 2016, Y16-005 (2016)

    Google Scholar 

  33. Kharadi, M.A., et al.: Sub-10-nm silicene nanoribbon field effect transistor. IEEE Trans. Electron Devices 66(11), 4976–4981 (2019)

    Article  Google Scholar 

  34. Walia, G.K., Randhawa, D.K.K.: Gas-sensing properties of armchair silicene nanoribbons towards carbon-based gases with single-molecule resolution. Struct. Chem. 29(6), 1893–1902 (2018)

    Article  Google Scholar 

  35. Meshginqalam, B., Barvestani, J.: Highly sensitive toxic gas molecule sensor based on defect-induced silicene. J. Mater. Sci.: Mater. Electron. 30(20), 18637–18646 (2019)

    Google Scholar 

  36. John, R., Merlin, B.: Optical properties of graphene, silicene, germanene, and stanene from IR to far UV—a first principles study. J. Phys. Chem. Solids 110, 307–315 (2017)

    Article  Google Scholar 

  37. Chowdhury, S., et al.: Optical and magnetic properties of free-standing silicene, germanene and T-graphene system. Phys. Sci. Rev. 2(5), 20165102 (2017)

    Google Scholar 

  38. Bao, H.-R., et al.: Width-dependent optical properties for zigzag-edge silicene nanoribbons. Chin. Phys. Lett. 35(1), 013301 (2018)

    Article  Google Scholar 

  39. Do, T.-N., et al.: Peculiar optical properties of bilayer silicene under the influence of external electric and magnetic fields. Sci. Rep. 9(1), 1–15 (2019)

    Article  Google Scholar 

  40. Lu, D., Song, Y., Huang, X.: Electric and optical properties modulations of armchair silicene nanoribbons by transverse electric fields. Curr. Appl. Phys. 19(1), 31–36 (2019)

    Article  Google Scholar 

  41. Barhoumi, M., Lazaar, K., Said, M.: DFT study of electronic and optical properties of silicene functionalized with chemical groups. J. Mol. Graph. Model. 91, 72–79 (2019)

    Article  Google Scholar 

  42. Santosh, R., Kumar, V.: A first-principles study of the stability and structural, optical, and thermodynamic properties of hydrogenated silicene. J. Comput. Electron. 19(2), 516–528 (2020)

    Article  Google Scholar 

  43. Ezawa, M.: Monolayer topological insulators: silicene, germanene, and stanene. J. Phys. Soc. Jpn. 84(12), 121003 (2015)

    Article  Google Scholar 

  44. Ezawa, M.: A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14(3), 033003 (2012)

    Article  Google Scholar 

  45. Dresselhaus, G., Riichiro, S.: Physical properties of carbon nanotubes. World Scientific, Singapore (1998)

    Google Scholar 

  46. Falkovsky, L.A., Varlamov, A.A.: Space-time dispersion of graphene conductivity. Eur. Phys. J. B 56(4), 281–284 (2007)

    Article  Google Scholar 

  47. Drummond, N.D., Zolyomi, V., Fal’Ko, V.I.: Electrically tunable band gap in silicene. Phys. Rev. B 85(7), 075423 (2012)

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mir.

Ethics declarations

Conflict of interest

The authors declare that there is not conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami-Nejad, H., Mir, A., Farmani, A. et al. Outstanding tunable electrical and optical characteristics in monolayer silicene at high terahertz frequencies. J Comput Electron 21, 590–598 (2022). https://doi.org/10.1007/s10825-022-01875-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01875-z

Keywords

Navigation