Skip to main content
Log in

Zigzag graphene nanoribbon antidot lattice for local interconnect applications: a precise computational method

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, a distributed model is used to examine the efficiency of zigzag graphene nanoribbons with antidots for local interconnect applications. Besides calculating the model parameters using precise equations and considering the full band-structure, the effects of introducing an antidot and its dimension on the performance of zigzag graphene nanoribbon interconnects are studied in HSPICE. The results of a local interconnect obtained from distributed transmission line show that: (1) While delay is directly related to resistance, capacitance, and inductance of the interconnect, rise-time, and fall-time are inversely related to inductance, and directly related to resistance, and capacitance. (2) Temperature is an effective parameter on the efficiency of the local interconnect; unlike global interconnect, temperature increase can decrease delay, rise-time, and fall-time. (3) By introducing antidot and adjusting its dimension, the rise-time, fall-time, and delay can be decreased significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kaushik, B.K., Majumder, M.K.: Carbon nanotube based VLSI interconnects: Analysis and design. Springer, Berlin (2015)

    Book  Google Scholar 

  2. Srivastava, N., Banerjee, K.: Interconnect challenges for nanoscale electronic circuits. J Min Metals Mater Soc TMS 56, 30 (2004)

    Article  Google Scholar 

  3. Brain, R.: Interconnect scaling: challenges and opportunities. In: 2016 IEEE International Electron Devices Meeting (IEDM) (2016)

  4. Weste, N., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective. Pearson Education India, New Delhi (2010)

    Google Scholar 

  5. Todri-Sanial, A., Dijon, J., Maffucci, A.: Carbon Nanotubes for Interconnects. Springer, Berlin (2017)

    Book  Google Scholar 

  6. Davis, J.A., Meindl, J.D.: Compact distributed RLC interconnect models. Part I: Single line transient, time delay, and overshoot expressions. IEEE Trans. Electron Dev. 47, 2068 (2000)

    Article  Google Scholar 

  7. Raveloa, B.: Delay modeling of high-speed distributed interconnect for the signal integrity prediction. Eur. Phys. J. Appl. Phys. 57, 31002 (2012)

    Article  Google Scholar 

  8. Kim, S., Wong, S.S.: Closed-form RC and RLC delay models considering input rise time. IEEE Trans. Circuits Syst. I Regul. Pap. 54, 2001 (2007)

    Article  Google Scholar 

  9. Datta, M., Sahoo, S., Kar, R.: An explicit model for delay and rise time for distributed RC on-chip VLSI interconnect. In: 2010 International Conference on Signal and Image Processing, IEEE, pp. 368–371 (2010)

  10. Mahmoud, N. H., Ismail, Y. I.: Accurate rise time and overshoots estimation in RLC interconnects. In: Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS'03, vol. 5: IEEE, pp. V-V (2003).

  11. Awwad, F. R., Lammoshi, T., Nekili, M.: Importance of on-chip inductance in designing RLC VLSI interconnects. In: The 14th International Conference on Microelectronics, IEEE, pp. 177–180 (2002)

  12. Ismail, Y.I., Friedman, E.G., Neves, J.L.: Exploiting the on-chip inductance in high-speed clock distribution networks. IEEE Trans. Very Large Scale Integr. (VLSI) Systems, 9, 963 (2001)

  13. Murali, R., Yang, Y., Brenner, K., Beck, T., Meindl, J.D.: Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94, 243114 (2009)

    Article  Google Scholar 

  14. Singh, K., Raj, B.: Performance and analysis of temperature dependent multi-walled carbon nanotubes as global interconnects at different technology nodes. J. Comput. Electron. 14, 469 (2015)

    Article  Google Scholar 

  15. Kaur, T., Rai, M.K., Khanna, R.: Effect of temperature on the performance analysis of MLGNR interconnects. J. Comput. Electron. 18(2), 722–736 (2019)

    Article  Google Scholar 

  16. Liang, G., Neophytou, N., Nikonov, D.E., Lundstrom, M.S.: Performance projections for ballistic graphene nanoribbon field-effect transistors. IEEE Trans. Electron Dev. 54(4), 677–682 (2007)

    Article  Google Scholar 

  17. Lemme, M.C., Echtermeyer, T.J., Baus, M., Kurz, H.: A graphene field-effect device. IEEE Electron Dev. Lett. 28(4), 282–284 (2007)

    Article  Google Scholar 

  18. Echtermeyer, T.J., Lemme, M.C., Baus, M., Szafranek, B.N., Geim, A.K., Kurz, H.: Nonvolatile switching in graphene field-effect devices. IEEE Electron Dev. Lett. 29(8), 952–954 (2008)

    Article  Google Scholar 

  19. Banszerus, L., Schmitz, M., Engels, S., Goldsche, M., Watanabe, K., Taniguchi, T., Stampfer, C.: Ballistic transport exceeding 28 μm in CVD grown graphene. Nano Lett. 16(2), 1387–1391 (2016)

    Article  Google Scholar 

  20. Zomer, P.J., Dash, S.P., Tombros, N., vanWees, B.J.: A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011)

    Article  Google Scholar 

  21. Rai, M.K., Chatterjee, A.K., Sarkar, S., Kaushik, B.K.: Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects. J. Comput. Electron. 15(2), 358–366 (2016)

    Article  Google Scholar 

  22. Kumar, V.R., Majumder, M.K., Kukkam, N.R., Kaushik, B.K.: Time and frequency domain analysis of MLGNR interconnects. IEEE Trans. Nanotechnol. 14(3), 484–492 (2015)

    Article  Google Scholar 

  23. Zhao, W.-S., Yin, W.-Y.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 56, 638 (2014)

    Article  Google Scholar 

  24. Atul Kumar Nishad and Rohit Sharma: Performance improvement in SC-MLGNRs interconnects using interlayer dielectric insertion. IEEE Trans. Emerg. Top. Comput. 3, 470 (2015)

    Article  Google Scholar 

  25. Marmolejo-Tejada, J.M., Velasco-Medina, J.: Review on graphene nanoribbon devices for logic applications. Microelectron. J. 48, 18 (2016)

    Article  Google Scholar 

  26. Filabadi, H.S., Alidash, H.K.: Graphene nanoribbon field-effect transistors-based digital general-purpose input/output block. ECS J. Solid State Sci. Technol. 9, 061002 (2020)

    Article  Google Scholar 

  27. Tamersit, K.: New nanoscale band-to-band tunneling junctionless GNRFETs: potential high-performance devices for the ultrascaled regime. J. Comput. Electron. 20, 1147 (2021)

    Article  Google Scholar 

  28. Lee, S., Lee, K., Liu, C.-H., Kulkarni, G.S., Zhong, Z.: Flexible and transparent all-graphene circuits for quaternary digital modulations. Nat. Commun. 3, 1018 (2012)

    Article  Google Scholar 

  29. Kang, J., Sarkar, D., Khatami, Y., Banerjee, K.: Proposal for all-graphene monolithic logic circuits. Appl. Phys. Lett. 103, 083113 (2013)

    Article  Google Scholar 

  30. Naeemi, A., Meindl, J.D.: Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans. Electron Devices 56, 1822 (2009)

    Article  Google Scholar 

  31. Yazdanpanah, A., Pourfath, M., Fathipour, M., Kosina, H., Selberherr, S.: A numerical study of line-edge roughness scattering in graphene nanoribbons. IEEE Trans. Electron Devices 2, 433 (2012)

    Article  Google Scholar 

  32. Han, M.Y., Ozyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  Google Scholar 

  33. Burke, P.J.: Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 1, 129 (2002)

    Article  Google Scholar 

  34. Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I.I., Batzill, M.: An extended defect in graphene as a metallic wire. Nature Nanotech. 5, 326 (2010)

    Article  Google Scholar 

  35. Bahamon, D.A., Pereira, A.L.C., Schulz, P.A.: Third edge for a graphene nanoribbon: a tight-binding model calculation. Phys. Rev. B 83(15), 155436 (2011)

    Article  Google Scholar 

  36. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  37. Sevincli, H., Cuniberti, G.: Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010)

    Article  Google Scholar 

  38. Berger, C., et al.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191 (2006)

    Article  Google Scholar 

  39. Bolotin, K.I., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351 (2008)

    Article  Google Scholar 

  40. Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., Dai, H.: Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field- effect transistors. Phys. Rev. Lett. 100, 206803 (2008)

    Article  Google Scholar 

  41. Chen, Z., Appenzeller, J.: Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices. In: 2008 IEEE International Electron Devices Meeting (2008).

  42. Yang, Y., Murali, R.: Impact of size effect on graphene nanoribbon transport. IEEE Electron Dev. Lett. 31, 237 (2010)

    Article  Google Scholar 

  43. Asselberghs, I. et al.: Graphene wires as alternative interconnects. In: 2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM), IEEE, pp. 317–320 (2015)

  44. Das, S., Das, D., Rahaman, H.: Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects. J. Comput. Electron. 17, 1695 (2018)

    Article  Google Scholar 

  45. Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223 (1957)

    Article  MathSciNet  Google Scholar 

  46. Yamacli, S.: Extraction of the voltage-dependent quantum capacitance and kinetic inductance of GNRFETs: a first-principles study. J. Comput. Electron. 14, 249 (2015)

    Article  Google Scholar 

  47. Naeemi, A., Meindl, J.D.: Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gigascale integrated systems. IEEE Trans. Electron Devices 1, 26 (2007)

    Article  Google Scholar 

  48. HSPICE® User Guide: Signal Integrity. E-2010.12, December 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Karamitaheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjmandian, M., Karamitaheri, H. & Alidash, H.K. Zigzag graphene nanoribbon antidot lattice for local interconnect applications: a precise computational method. J Comput Electron 21, 411–421 (2022). https://doi.org/10.1007/s10825-022-01853-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01853-5

Keywords

Navigation