Skip to main content
Log in

Tuning the optical properties through bandgap engineering in Si-doped YAuPb: ab initio study

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In order to probe the bandgap engineering to tune optical properties in YAuPb1−xSix (x = 0, 0.25, 0.50, 0.75 and 1) alloys, we used all-electron full-potential linearized augmented plane wave (FP-LAPW+lo) method within the framework of the density functional theory. The optimized structural parameters were in good agreement with other theoretical and experimental results. The calculated results of elastic constant satisfy the condition for mechanical stability at each composition for cubic symmetry. In addition, the study of elastic parameters is summarized for the calculation bulk modulus, Young’s modulus, shear modulus, Kleinman parameters, Poisson’s ratio and Lame’s co-efficient. To predict the brittle (ductile) nature of this composition, the Cauchy pressure, Poisson’s ratio, and B/G ratio were also calculated. Using modified Becke and Johnson GGA, the bandgap values of each composition were computed precisely. Further, it was observed that for 0.25 < x < 0.75, the bandgap structure revealed a direct bandgap configuration. In order to analyze the electronic structure of each composition, the total and partial densities of states have been investigated in detail. Furthermore, the investigation of optical parameters in terms of dielectric functions revealed the potential of these alloys for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin, H., Wray, L.A., Xia, Y., Jia, S., Cava, R.J., Bansil, A., Hasan, M.Z.: Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 9, 546–549 (2010)

    Article  Google Scholar 

  2. Nourbakhsh, Z.: Three dimensional topological insulators of LuPdBixSb1−x alloys. J. Alloys Compd. 549, 51–56 (2013)

    Article  Google Scholar 

  3. Hasan, M.Z., Kane, C.L.: Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    Article  Google Scholar 

  4. Qi, X.L., Zhang, S.C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)

    Article  Google Scholar 

  5. Zhu, Z., Cheng, Y., Schwingenschlögl, U.: Band inversion mechanism in topological insulators: a guideline for materials design. Phys. Rev. B 85, 235401 (2012)

    Article  Google Scholar 

  6. Fu, L., Kane, C.L.: Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007)

    Article  Google Scholar 

  7. Moore, J.E.: The next generation. Nat. Phys. 5, 378–380 (2009)

    Article  Google Scholar 

  8. Li, Y., Jiang, C.B., Liang, T., Ma, Y., Xu, H.: Martensitic transformation and magnetization of Ni-Fe-Ga ferromagnetic shape memory alloys. Scr. Mater. 48, 1255–1258 (2003)

    Article  Google Scholar 

  9. Feng, W., Xiao, D., Zhang, Y., Yao, Y.: Half-Heusler topological insulators: A first-principles study with the Tran-Blaha modified Becke-Johnson density functional. Phys. Rev. B 82, 235121 (2010)

    Article  Google Scholar 

  10. Rabin, D., Kyratsi, T., Fuks, D., Gelbstein, Y.: Thermoelectric transport properties of (Ti1−cAlc)NiSn half-Heusler alloy. Phys. Chem. Chem. Phys. 22, 1566–1574 (2020)

    Article  Google Scholar 

  11. Al-Sawai, W., Lin, H., Markiewicz, R., Wray, L., Xia, Y., Xu, S.-Y., Hasan, M., Bansil, A.: Topological electronic structure in half-Heusler topological insulators. Phys. Rev. B 82, 125208 (2010)

    Article  Google Scholar 

  12. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  Google Scholar 

  13. Lin, H., Wray, L.A., Xia, Y., Xu, S., Jia, S., Cava, R.J., Bansil, A., Hasan, M.Z.: Tunable multifunctional topological insulators in ternary Heusler compounds. Nat. Mater. 9, 541–545 (2010)

    Article  Google Scholar 

  14. Kaur, R., Kim, K.-H., Deep, A.: A convenient electrolytic assembly of graphene-MOF composite thin film and its photoanodic application. Appl. Surf. Sci. 396, 1303–1309 (2017)

    Article  Google Scholar 

  15. Kandpal, H.C., Felser, C., Seshadri, R.: Covalent bonding and the nature of band gaps in some half-Heusler compounds. J. Phys. D: Appl. Phys. 39, 776 (2006)

    Article  Google Scholar 

  16. Zunger, A., Wei, S.-H., Feireira, L.G., Bernard, J.E.: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990)

    Article  Google Scholar 

  17. Jiang, C., Wolverton, C., Sofo, J., Chen, L.-Q., Liu, Z.-K.: First-principles study of binary bcc alloys using special quasi random structures. Phys. Rev. B 69, 214202 (2004)

    Article  Google Scholar 

  18. Blaha, P., Schwarz, K., Madsen, G.K.H., Hvasnicka, D., Luitz, J.: WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz. Techn. Universit Wien, Wien (2001)

    Google Scholar 

  19. Wu, Z., Cohen, R.E.: More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006)

    Article  Google Scholar 

  20. Noor, N.A., Ali, S., Tahir, W., Shaukat, A., Reshak, A.H.: First principles study of structural, electronic and magnetic properties of Mg1−xMnxTe alloys. J. Alloys Compd. 509, 8137–8147 (2011)

    Article  Google Scholar 

  21. Becke, A.D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124, 221101 (2006)

    Article  Google Scholar 

  22. Almeida, J.S., Ahuja, R.: Tuning the structural, electronic, and optical properties of alloys. Appl. Phys. Lett. 89, 061913 (2006)

    Article  Google Scholar 

  23. Tanveer, W., Faridi, M.A., Noor, N.A., Mahmood, A., Amin, B.: First-principles investigation of structural, elastic, electronic and magnetic properties of Be0.75Co0.25Y (Y=S, Se and Te) compounds. Curr. Appl. Phys. 15, 1324–1331 (2015)

    Article  Google Scholar 

  24. Marazza, R., Rossi, D., Ferro, R.: On the ternary rare earth alloys: RAuPb compounds. J. Less-Common Met. 138, 189–193 (1988)

    Article  Google Scholar 

  25. Lekhal, A., Benkhelifa, F.Z., Mecabih, S., Abbar, B., Bouhafs, B.: Structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) in hexagonal and cubic phases. Bull. Mater. Sci. 39, 195–200 (2016)

    Article  Google Scholar 

  26. Singh, S., Kumar, R.: Ab-initio calculations of elastic constants and thermodynamic properties of LuAuPb and YAuPb half-heusler compounds. J. Alloys Compd. 772, 544–548 (2017)

    Article  Google Scholar 

  27. Kandpal, H.C., Felser, C., Seshadri, R.: Covalent bonding and the nature of band gaps in some half-Heusler compounds. J. Phys. D Appl. Phys. 39, 776 (2006)

    Article  Google Scholar 

  28. Vegard, L.: Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 5, 17–21 (1921)

    Article  Google Scholar 

  29. Denton, A.R., Ashcroft, N.W.: Vegard’s law. Phys. Rev. A. 43, 3161 (1991)

    Article  Google Scholar 

  30. Singh, D., Pandey, D.K., Singh, D.K., Yadav, R.R.: Propagation of ultrasonic waves in neptunium monochalcogenides. Appl. Acoust. 72, 737–741 (2011)

    Article  Google Scholar 

  31. Kaurav, N., Kuo, Y.K., Joshi, G., Choudhary, K.K., Varshney, D.: High-pressure structural phase transition and elastic properties of yttrium pnictides. High Press. Res. 28, 651 (2008)

    Article  Google Scholar 

  32. Wallace, D.C.: Thermodynamics of Crystals. Wiley, New York (1972)

    Book  Google Scholar 

  33. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Clarendon, Oxford (1954)

    MATH  Google Scholar 

  34. Yadav, R., Singh, D.: Behaviour of ultrasonic attenuation in intermetallics. Intermetallics 9, 189–192 (2001)

    Article  Google Scholar 

  35. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349–354 (1952)

    Article  Google Scholar 

  36. Voigt, W.: Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys. 38, 573 (1889)

    Article  MATH  Google Scholar 

  37. Reuss, A., Angew, Z.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Math. Mech. 9, 49 (1929)

    MATH  Google Scholar 

  38. Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)

    Article  Google Scholar 

  39. Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–348 (1992)

    Article  Google Scholar 

  40. Frantsevich, I.N., Voronov, F.F., Bokuta, S.A.: Handbook on Elastic Constants and Moduli of Elasticity for Metals and Nonmetals. Naukova Dumka, Kiev (1982)

    Google Scholar 

  41. Greaves, G.N., Greer, A.L., Lakes, R.S., Rouxel, T.: Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011)

    Article  Google Scholar 

  42. Kim, K., Lambrecht, W.R.L., Segal, B.: Electronic structure of GaN with strain and phonon distortions. Phys. Rev. B 50, 1502 (1994)

    Article  Google Scholar 

  43. Kleinman, L.: Deformation potentials in silicon. I. Uniaxial strain. Phys. Rev. 128, 2614 (1962)

    Article  MATH  Google Scholar 

  44. Harrison, W.A.: Electronic Structure and Properties of Solids. Dover, New York (1989)

    Google Scholar 

  45. Mayer, B., Anton, H., Bott, E., Methfessel, M., Sticht, J.: Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics 11, 23–32 (2003)

    Article  Google Scholar 

  46. Singh, D.J.: Electronic structure calculations with the Tran-Blaha modified Becke-Johnson density functional. Phys. Rev. B 82, 205102 (2010)

    Article  Google Scholar 

  47. Tran, F., Blaha, P., Schwarz, K.: Band gap calculations with Becke–Johnson exchange potential. J. Phys. Condens. Matter 19, 196208 (2007)

    Article  Google Scholar 

  48. Ambrosch-Draxl, C., Sofo, J.O.: Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 175, 1–14 (2006)

    Article  Google Scholar 

  49. Wooten, F.: Optical Properties of Solids. Academic Press, New York (1972)

    Google Scholar 

  50. Penn, D.R.: Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093 (1962)

    Article  MATH  Google Scholar 

  51. Ravindra, N.M., Ganapathy, P., Choi, J.: Energy gap-refractive index relations in semiconductors—an overview. Infrared Phys. Technol. 50, 21–29 (2007)

    Article  Google Scholar 

  52. Gupta, V.P., Ravindra, N.M.: Comments on the Moss formula. Phys. Stat. Sol. B 10, 715–719 (1980)

    Article  Google Scholar 

  53. Ravindra, N.M., Auluck, S., Srivastava, V.K.: On the Penn gap in semiconductors. Phys. Stat. Sol. B 93, 155–160 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank IT department of National Center for Physics (NCP), Islamabad for supplying computational resources. The author (H. A. Yakout) extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number (RGP.1/107/42). The author (P. Ahmad) also extends his appreciation to the higher education commission of Pakistan (HEC) for providing funds for our research work under the National Research program for Universities (NRPU) Project No. 10928.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Saeed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, F., Dahshan, A., Yakout, H.A. et al. Tuning the optical properties through bandgap engineering in Si-doped YAuPb: ab initio study. J Comput Electron 21, 119–127 (2022). https://doi.org/10.1007/s10825-021-01845-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01845-x

Keywords

Navigation