Skip to main content

Advertisement

Log in

Analysis of dipyridine dipyrrole based molecules for solar cell application using computational approach

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work, six dipyridine dipyrrole (DPDP) derivatives are reported as π-conjugated, electron donor molecules used in BHJ solar cells. Density functional theory (DFT) method with the Becke three-parameter, hybrid functional combined with the Lee, Yang, and Parr correlation functional (B3LYP) taking 6-311G(d) basis set supported by the Gaussian 09 program has been employed for the determination of the structural, geometrical and molecular electrostatic potential. Absorption properties have been examined employing the time-dependent density functional theory (TD-DFT) method with B3LYP functional and 6-311G(d) basis set. Two major photovoltaic parameters for predicting the efficiency of the bulk heterojunction (BHJ) solar cell for power conversion, namely, open-circuit voltages (Voc) and light-harvesting efficiencies (LHE), are studied. The π-conjugated molecules, due to their alternate π-bonds and lower bandgap energy (Egap), possess excellent photovoltaic properties, and large photocurrent generation is obtained upon light absorption. The reported molecules can be used as electron donor molecules in the active part of the BHJ devices to generate photoelectronic current based on their studied properties. The reported molecules can be easily synthesized and have properties like mechanical flexibility, non-toxicity, low-cost production platform, and biodegradability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bourass, M., Amine, A., Hamidi, M., Bouachrine, M.: New organic dyes based on phenylenevinylene for solar cells: DFT and TD-DFT investigation. Karbala Int. J. Mod. Sci. 3, 75–82 (2017)

    Article  Google Scholar 

  2. Raftani, M., Abram, T., Bennani, N., Bouachrine, M.: Theoretical study of new conjugated compounds with a low bandgap for bulk heterojunction solar cells: DFT and TD-DFT study. Results Chem. 2, 100040 (2020)

    Article  Google Scholar 

  3. Bourass, M., Benjelloun, A.T., Benzakour, M., Mcharfi, M., Jhilal, F., Hamidi, M., Bouachrine, M.: The optoelectronic properties of organic materials based on triphenylamine that are relevant to organic solar photovoltaic cells. New J. Chem. 41, 13336–13346 (2017)

    Article  Google Scholar 

  4. Scharber, M.C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J., Brabec, C.J.: Design rules for donors in bulk-heterojunction solar cells-Towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)

    Article  Google Scholar 

  5. Chapin, D.M., Fuller, C.S., Pearson, G.L.: A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676 (1954)

    Article  Google Scholar 

  6. Chidichimo, G., Filippelli, L.: Organic Solar Cells: Problems and Perspectives. Int. J. Photoenergy 2010, 123534 (2010)

    Article  Google Scholar 

  7. Sampaio, P.G., González, M.O.: Photovoltaic solar energy: conceptual framework. Renew. Sustain. Energy Rev. 74, 590–601 (2017)

    Article  Google Scholar 

  8. Khlyabich, P.P., Burkhart, B., Rudenko, A.E., Thompson, B.C.: Optimization and simplification of polymer–fullerene solar cells through polymer and active layer design. Polymer 54, 5267–5298 (2013)

    Article  Google Scholar 

  9. Dennler, G., Scharber, M.C., Brabec, C.J.: Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323–1338 (2009)

    Article  Google Scholar 

  10. Heeger, A.J.: 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv. Mater. 26, 10–28 (2014)

    Article  Google Scholar 

  11. Schilinsky, P., Waldauf, C.: Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl. Phys. Lett. 81, 3885 (2002)

    Article  Google Scholar 

  12. Zhang, J., Tan, H.S., Guo, X., Facchetti, A., Yan, H.: Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 3, 720–731 (2018)

    Article  Google Scholar 

  13. Shaheen, S.E., Brabec, C.J.: Sariciftci, N.S.: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841 (2001)

    Article  Google Scholar 

  14. Yang, L., Yan, L., You, W.: Organic solar cells beyond one pair of donor-acceptor: ternary blends and more. J. Phys. Chem. Lett. 4, 1802–1810 (2013)

    Article  Google Scholar 

  15. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Levi, D.H., Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25, 3–13 (2017)

    Article  Google Scholar 

  16. Krebs, F.C., Spanggaard, H.: Significant improvement of polymer solar cell stability. Chem. Mater. 17, 5235–5237 (2005)

    Article  Google Scholar 

  17. Brabec, C.J., Zerza, G., Cerullo, G., De Silvestri, S., Luzzati, S., Hummelen, J.C., Sariciftci, S.: Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem. Phys. Lett. 340, 232–236 (2001)

    Article  Google Scholar 

  18. Schmidt-Mende, L., Bach, U., Humphry-Baker, R., Horiuchi, T., Miura, H., Ito, S., Uchida, S., Grätzel, M.: Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv. Mater. 17, 813–815 (2005)

    Article  Google Scholar 

  19. Bagher, A.M., Vahid, M.M., Mohsen, M.: Types of solar cells and application. Am. J. Opt. Photonics 3, 94–113 (2015)

    Article  Google Scholar 

  20. Tabatchnik-Rebillon, A., Aub, C., Bakkali, H., Delaunay, T., Manh, G.T., Blot, V., Thobie-Gautier, C., Renault, E., Soulard, M., Planchat, A., Questel, J.-Y.L., Guvel, R.L., Guguen-Guillouzo, C., Kauffmann, B., Ferrand, Y., Huc, I., Urgin, K., Condon, S., Lonel, E., Evain, M., Lebreton, J., Jacquemin, D., Pipelier, M., Dubreuil, D.: Electrochemical synthesis and characterisation of alternating tripyridyl– dipyrrole molecular strands with multiple nitrogen-based donor-acceptor binding sites. Chem. Eur. J. 16, 11876–11889 (2010)

    Article  Google Scholar 

  21. Smithen, D.A., Monro, S., Pinto, M., Roque, J., III., Diaz-Rodriguez, R.M., Yin, H., Cameron, C.G., Thompson, A., McFarland, S.A.: Bis[pyrrolyl Ru(ii)] triads: a new class of photosensitizers for metal–organic photodynamic therapy. Chem. Sci. 11, 12047–12069 (2020)

    Article  Google Scholar 

  22. UrRehman, S., Alam, A., Bibi, S., Sadaf, S., Khan, S.R., Shoaib, M., Khan, A.Q., Khan, M., UrRehman, W.: The effect of different aromatic conjugated bridges on optoelectronic properties of diketopyrrolopyrrole-based donor materials for organic photovoltaics. J. Mol. Model. 26, 154 (2020)

    Article  Google Scholar 

  23. Aicha, Y.A., Bouzzine, S.M., Zair, T., Bouachrine, M., Hamidi, M., Salgado-Morán, G., Tagle, R.R., Mendoza-Huizar, L.H.: Tuning the electronic, photophysical and charge transfer properties of small DA molecules based on Thienopyrazine-terthienyls by changing the donor fragment: a DFT study. J. Chil. Chem. Soc. 62, 3637–3646 (2017)

    Article  Google Scholar 

  24. Alharbi, F.H., Rashkeev, S.N., El-Mellouhi, F., Lüthi, H.P., Tabet, N., Kais, S.: An efficient descriptor model for designing materials for solar cells. npj Comput. Mater. 1, 15003 (2015)

    Article  Google Scholar 

  25. O’boyle, N.M., Tenderholt, A.L., Langner, K.M.: cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008)

    Article  Google Scholar 

  26. El Alamy, A., Amine, A., Bouzzine, S.M., Lachgar, M., Hamidi, M., Elhamzi, A., Bouachrine, M.: DFT study of small compounds based on thiophene and benzo [1,2,5] thiadiazole for solar cells: correlation-structure/electronic properties. J. Mater. Environ. Sci. 8, 3897–3905 (2017)

    Google Scholar 

  27. El Assyry, A., Lamsayah, M., Warad, I., Touzani, R., Bentiss, F., Zarrouk, A.: Theoretical investigation using DFT of quinoxaline derivatives for electronic and photovoltaic effects. Heliyon 6, e03620 (2020)

    Article  Google Scholar 

  28. Shao, S., Shi, J., Murtaza, I., Xu, P., He, Y., Ghosh, S., Zhu, X., Perepichka, I.F., Meng, H.: Exploring the electrochromic properties of poly(thieno[3,2-b]thiophene)s decorated with electron-deficient side groups. Polym. Chem. 8, 769–784 (2017)

    Article  Google Scholar 

  29. Youssef, A.A., Bouzzine, S.M., Fahim, Z.M., Sıdır, İ, Hamidi, M., Bouachrine, M.: Designing donor-acceptor thienopyrazine derivatives for more efficient organic photovoltaic solar cell: a DFT study. Physica B Condens. Matter 560, 111–125 (2019)

    Article  Google Scholar 

  30. Politzer, P., Murray, J.S.: The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. 108, 134–142 (2002)

    Article  Google Scholar 

  31. Fei, E.T.L., Biswas, J., Datta, B., Kumar, D.: Computational studies of diindole-based molecules for organic bulk heterojunction solar devices using DFT and TD-DFT calculations. Struct. Chem. 32, 1973–1984 (2021)

    Article  Google Scholar 

  32. Liu, W., Yang, S., Li, J., Su, G., Ren, J.C.: One molecule, two states: single molecular switch on metallic electrodes. WIREs Comput. Mol. Sci. 11, e1511 (2020)

    Google Scholar 

  33. Alipour, M., Mohajeri, A.: Molecular electrostatic potential as a tool for evaluating the etherification rate constant. J. Phys. Chem. A 114, 7417–7422 (2010)

    Article  Google Scholar 

  34. Gadre, S.R., Suresh, C.H., Mohan, N.: Electrostatic potential topology for probing molecular structure, bonding and reactivity. Molecules 26, 3289 (2021)

    Article  Google Scholar 

  35. El Azzouzi, M., Aouniti, A., Herrag, L., Chetouani, A., Elmsellem, H., Hammouti, B.: Investigation of isomers of hydroxyphenylamino propane nitrile as mild steel corrosion inhibitors in 1 M HCl. Der Pharma Chem. 7, 12–24 (2015)

    Google Scholar 

  36. Pearson, R.G.: Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. U.S.A. 83, 8440–8441 (1986)

    Article  Google Scholar 

  37. Zahllou, A., Abram, T., Boussaidi, S., Zgou, H., Bejjit, L., Bouachrine, M.: Theoretical investigation of new organic materials based on fluorene and thiophene for photovoltaic applications. Mor. J. Chem. 3, 861–871 (2015)

    Google Scholar 

  38. Chattaraj, P.K., Maiti, B.: HSAB principle applied to the time evolution of chemical reactions. J. Am. Chem. Soc. 125, 2705–2710 (2003)

    Article  Google Scholar 

  39. Divya, V.V., Suresh, C.H.: Density functional theory study on the donating strength of donor systems in dye-sensitized solar cells. New J. Chem. 44, 7200–7209 (2020)

    Article  Google Scholar 

  40. Divya, V.V., Suresh, C.H.: Tuning the donating strength of dye sensitizers using molecular electrostatic potential analysis. New J. Chem. 45, 2496–2507 (2021)

    Article  Google Scholar 

  41. Anjali, B.A., Suresh, C.H.: Absorption and emission properties of 5-phenyl tris(8-hydroxyquinolinato) M(III) complexes (M = Al, Ga, In) and correlations with molecular electrostatic potential. J. Comput. Chem. 41, 1497–1508 (2020)

    Article  Google Scholar 

  42. Divya, V.V., Sayyed, F.B., Suresh, C.H.: substituent effect transmission power of alkyl, alkenyl, alkynyl, phenyl, thiophenyl, and polyacene spacers. ChemPhysChem 20, 1752–1758 (2019)

    Google Scholar 

  43. Preat, J., Jacquemin, D., Perpete, E.A.: Towards new efficient dye-sensitized solar cells. Energy Environ. Sci. 3, 891–904 (2010)

    Article  Google Scholar 

  44. Bourass, M., Benjelloun, A.T., Benzakour, M., Mcharfi, M., Hamidi, M., Bouzzine, S.M., Bouachrine, M.: DFT and TD-DFT calculation of new thienopyrazine-based small molecules for organic solar cells. Chem. Cent. J. 10, 67 (2016)

    Article  Google Scholar 

  45. Durrant, J.R., Haque, S.A., Palomares, E.: Towards optimization of electron transfer processes in dye sensitized solar cells. Coord. Chem. Rev. 248, 1247–1257 (2004)

    Article  Google Scholar 

  46. Dias, F.B., Bourdakos, K.N., Jankus, V., Moss, K.C., Kamtekar, K.T., Bhalla, V., Santos, J., Bryce, M.R., Monkman, A.P.: Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv. Mater. 25, 3707–3714 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors S. Tamang, A. Thapa, K. Chettri and J. Biswas, would like to acknowledge the Department of Chemistry, Sikkim Manipal Institute of Technology, for help and support. The author B. Datta wishes to acknowledge the Department of Chemistry, Amity University, Kolkata, for help and support.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

S. Tamang performed all computational studies and analyzed the data. A. Thapa and K. Chettri helped analyze the data. B. Datta was involved in the conceptualization, drafting and reviewing of the manuscript. J. Biswas was involved in the conceptualization, design and manuscript drafting.

Corresponding authors

Correspondence to Bandita Datta or Joydeep Biswas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 170 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamang, S., Thapa, A., Chettri, K. et al. Analysis of dipyridine dipyrrole based molecules for solar cell application using computational approach. J Comput Electron 21, 94–105 (2022). https://doi.org/10.1007/s10825-021-01822-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01822-4

Keywords

Navigation