Skip to main content

Advertisement

Log in

The pressure effects on electronic, thermoelectric, thermodynamic, and optical features of Li3Bi

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

First-principles electronic, thermoelectric, thermodynamic, and optical calculations of an alkali pnictide compound, Li3Bi, are implemented by WIEN2k, BoltzTraP and Gibbs2 using density functional theory in the presence of spin–orbit coupling. The generalized gradient approximation and modified Becke and Janson functionals with the generalized gradient approximation are utilized for the treatment of exchange and correlation potential. The Li3Bi electronic band structure indicates that this compound is a semiconductor at zero pressure. The energy band gap of this compound closes at a pressure of 6.0 GPa. In contrast, low pressures enhance the energy band gap and reduce the band width of the valence and conduction bands. The pressure and temperature effects on the thermoelectric and thermodynamic performance of this compound are investigated. This results reveal (1) an increase in the power factor values under high temperatures and low pressures, (2) a reduction in the thermal expansion and the specific heat capacity at constant volume and an increase in the Debye temperature under high pressures at constant temperature. Also, the evaluation of optical properties under various hydrostatic pressures shows an increase in the static real part of the dielectric function and the static reflectivity of Li3Bi at a pressure of 6 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beister, H.J., Klein, J., Schewe, J., Syassen, K.: Structural phase transitions of alkali metal pnictides and chalcogenides under pressure. High Pressure Res. 7(1), 91–95 (1991)

    Article  Google Scholar 

  2. Brauer, G., Zintl, E.: Konstitution von Phosphiden, Arsemiden, Antimoniden und Wismutiden des Lithiums, Natriums und Kaliums. Z. Phys. Chem. 37B(5/6), 323–352 (2017)

    Google Scholar 

  3. Spicer, W.E.: Photoemissive, photoconductive, and optical absorption studies of alkali-antimony compounds. Phys. Rev. 112, 114 (1958)

    Article  Google Scholar 

  4. Gnutzmann, V.G., Dorn, F.W., Klemm, W.: Uber einige A3B- und AB2-Verbindungen der schweren Alkalimetalle mit Elementen der V Gruppe. Z. Anorg. Allg. Chem. 309(3/4), 210–225 (1961)

    Article  Google Scholar 

  5. Hafner, P., Range, K.-J.: Na3As revised: high-pressure synthesis of single crystals and structure refinement. J. Alloys Compd. 216(1), 7 (1994)

    Article  Google Scholar 

  6. Taft, E.A., Philipp, H.R.: Structure in the energy distribution of photoelectrons from K3Sb and Cs3Sb. Phys. Rev. 115, 1583 (1959)

    Article  Google Scholar 

  7. Kalarasse, L., Bennecer, B., Kalarasse, F.: Elastic and electronic properties of the alkali pnictide compounds Li3Sb, Li3Bi, Li2NaSb and Li2NaBi. Comput. Mat. Sci 50, 2880–2885 (2011)

    Article  Google Scholar 

  8. Leonova, M.E., Bdikin, I.K., Kulinich, S.A., Gulish, O.K., Sevast’yanova, L.G., Burdina, K.P.: High-pressure phase transition of hexagonal alkali pnictides. Inorg. Mater. 39(3), 266–270 (2003)

    Article  Google Scholar 

  9. Gulebaglan, S.E., Dogan, E.K.: Structural electronic and dynamic properties of Li3Bi and Li2NaBi. Mater. Res. Exp. 7, 015913 (2020)

    Article  Google Scholar 

  10. Weppner, W., Huggins, R.A.: Electrochemical investigation of the chemical diffusion, partial ionic conductivities, and other kinetic parameters in Li3Sb and Li3Bi. J. Solid State Chem. 22, 297–308 (1977)

    Article  Google Scholar 

  11. Kalarasse, L., Bennecer, B., Kalarasse, F.: Optical properties of the alkali antimonide semiconductors Cs3Sb, Cs2KSb, CsK2Sb and K3Sb. J. Phys. Chem. Solids 71, 314 (2010)

    Article  Google Scholar 

  12. Zhou, G.T., Palchik, O., Pol, V.G., Sominski, E., Koltypin, Y., Gedanken, A.: Microwave-assisted solid-state synthesis and characterization of intermetallic compounds of Li3Bi and Li3Sb. J. Mater. Chem. 13, 2607 (2003)

    Article  Google Scholar 

  13. Peng, K., Zhou, Z., Wang, H., Wu, H., Ying, J., Han, G., Lu, X.: Thermoelectric performance of binary lithium-based compounds: Li3Sb and Li3Bi. Appl. Phys. Lett. 119(3), 033901 (2021)

    Article  Google Scholar 

  14. Yang, X., Dai, Z., Zhao, Y., Liu, J., Meng, S.: Low lattice thermal conductivity and excellent thermoelectric behavior in Li3Sb and Li3Bi. J. Phys. Condens. Matter 30, 425401 (2018)

    Article  Google Scholar 

  15. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  16. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange–correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  Google Scholar 

  17. Engel, E., Dreizler, R.M.: Density Functional Theory: An Advanced Course. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  18. Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G.K.H., Marks, L.D.: WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020)

    Article  Google Scholar 

  19. Madsen, G.K.H., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Article  MATH  Google Scholar 

  20. Blanco, M.A., Francisco, E., Luana, V.: GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57–72 (2004)

    Article  MATH  Google Scholar 

  21. Otero-de-la-Roza, A., Abbasi-Pérez, D., Luaña, V.: Gibbs2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 182, 2232–2248 (2011)

    Article  MATH  Google Scholar 

  22. Narimani, M., Yalameha, S., Nourbakhsh, Z.: High thermoelectric efficiency of LaX (X = Sb, Bi) two dimensional topological insulators. J. Phys. Condens. Matter 32, 255501 (2020)

    Article  Google Scholar 

  23. Narimani, M., Yalameha, S., Nourbakhsh, Z.: Quantum spin Hall effect, thermoelectric performance, and optical properties of XBi (X = Sc, Y) monolayers. Physica E 122, 114199 (2020)

    Article  Google Scholar 

  24. Guo, S.-D.: Spin–orbit and strain effect on power factor in monolayer MoS2. Comput. Mater. Sci. 123, 8–13 (2016)

    Article  Google Scholar 

  25. Guo, S.-D., Wang, J.L.: Pressure enhanced thermoelectric properties in Mg2Sn. RSC Adv. 6(37), 31272–31276 (2016)

    Article  Google Scholar 

  26. Hicks, L.D., Harman, T.C., Sun, X., Dresselhaus, M.S.: Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 53, R10493 (1996)

    Article  Google Scholar 

  27. Onoue, M., Ishii, F., Oguchi, T.J.: Electronic and thermoelectric properties of the intermetallic compounds MNiSn (M = Ti, Zr, and Hf). Phys. Soc. Jpn. 77, 054706 (2008)

    Article  Google Scholar 

  28. Dresselhaus, M., Chen, G., Ren, Z., Fleurial, J.P., Gogna, P., Tang, M.Y.: Nanocomposites to enhance ZT in thermoelectric. In: MRS Online Proceedings Library Archive, p. 1044 (2007)

  29. Satyala, N., Norouzzadeh, P.: Nano Bulk Thermoelectric: Concepts, Techniques, and Modeling in Nanoscale Thermoelectric, pp. 141–183. Springer, Berlin (2014)

    Book  Google Scholar 

  30. Zamanipour, Z., Shi, X., Mozafari, M., Krasinski, J.S., Tayebi, L.: Synthesis characterization, and thermoelectric properties of nanostructured bulk p-type MnSi1.73, MnSi1.75, and MnSi1.77. Ceram. Int. 39, 2353–2358 (2013)

    Article  Google Scholar 

  31. Satyala, N., Vashaee, D.: Modeling of thermoelectric properties of magnesium silicide (Mg2Si). J. Electron. Mater. 41, 1785–1791 (2012)

    Article  Google Scholar 

  32. Satyala, N., Vashaee, D.: Detrimental influence of nanostructuring on the thermoelectric properties of magnesium silicide. J. Appl. Phys. 112, 093716 (2012)

    Article  Google Scholar 

  33. Norouzzadeh, P., Zamanipour, Z., Krasinski, J.S.: The effect of nanostructuring on thermoelectric transport properties of p-type higher manganese silicide MnSi1.73. J. Appl. Phys. 112, 124308 (2012)

    Article  Google Scholar 

  34. Zamanipour, Z., Krasinski, J.S.: Comparison of boron precipitation in p-type bulk nanostructured and polycrystalline silicon germanium alloy. J. Appl. Phys. 113, 143715 (2013)

    Article  Google Scholar 

  35. Toher, C., Plata, J.J., Levy, O., Jong, M., Asta, M., Nardelli, M.B., Curtarolo, S.: High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model. Phys. Rev. B 90, 174107 (2014)

    Article  Google Scholar 

  36. Narimani, M., Nourbakhsh, Z.: Topological phase, structural, electronic, thermodynamic and optical properties of XPtSb (X = Lu, Sc) compounds. J. Phys. Chem. Solids 102, 121–129 (2017)

    Article  Google Scholar 

  37. Yalameha, S., Vaez, A.: Structural, electronic, elastic and thermodynamic properties of Al1xZxNi (Z = Cr, V and x = 0, 0.125, 0.25) alloys: first principles calculations. Comput. Condens. Matter 21, e00415 (2019)

    Article  Google Scholar 

  38. Yalameha, S., Vaez, A.: Ab-inito thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds. Int. J. Mod. Phys. B 32(11), 1850129 (2018)

    Article  Google Scholar 

  39. Saeidi, P., Yalameha, S., Nourbakhsh, Z.: The investigation of structural, electronic, elastic and thermodynamic properties of Gd1xYxAuPb alloys: a first principle study. Phys. Lett. A 383(2–3), 221–230 (2019)

    Article  Google Scholar 

  40. Liu, L., Du, J., Zhao, J., Liu, H., Wu, D., Zhao, F.: Study of high-pressure and high-temperature behaviors and α-to-β phase transition of forsterite by first-principles and quasi-harmonic Debye model. Comput. Phys. Commun. 179, 417–423 (2008)

    Article  Google Scholar 

  41. Ambrosch-Draxl, C., Sofo, J.O.: Linear optical properties of solids within the full potential linearized augmented plane wave method. Comput. Phys. Commun. 175, 1–14 (2006)

    Article  Google Scholar 

  42. Narimani, M., Nourbakhsh, Z.: Topological phase and optical properties of LuNiBi bulk and nano-layer. Thin Solid Films 634, 112–120 (2017)

    Article  Google Scholar 

  43. Narimani, M., Nourbakhsh, Z.: Topological phase, electronic, magnetic and optical properties of ScPdBi compound with Gd, Np and Cm impurities. J. Magn. Magn. Mater. 434, 62–67 (2017)

    Article  Google Scholar 

  44. Narimani, M., Nourbakhsh, Z.: Electronic, topological phase and optical properties of XPdBi (X = Lu, Sc) nano-layers. Thin Solid Films 616, 287–296 (2016)

    Article  Google Scholar 

  45. Penn, D.R.: Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mitra Narimani or Shahram Yalameha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narimani, M., Yalameha, S. & Nourbakhsh, Z. The pressure effects on electronic, thermoelectric, thermodynamic, and optical features of Li3Bi. J Comput Electron 20, 2300–2307 (2021). https://doi.org/10.1007/s10825-021-01811-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01811-7

Keywords

Navigation