Skip to main content
Log in

Inflow boundary conditions and nonphysical solutions to the Wigner transport equation

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We investigate the emergence of nonphysical solutions to the steady-state Wigner transport equation on finite-sized simulation domains with inflow boundary conditions. We find that inflow boundary conditions are generally valid, but the wave number uncertainty of injected wave packets has a lower bound that can be significantly higher than usually assumed. Large values of the so-called quantum evolution term (which captures spatial nonlocality in the Wigner transport equation) near simulation-domain boundaries are the cause of spurious reflections, the often-reported discontinuity of the Wigner function at zero wave vector, and negative probabilities. We offer a simple relationship between the lower bound of the wave number uncertainty and simulation parameters that will ensure physical results with inflow boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

Data will be made available upon reasonable request.

References

  1. Weinbub, J., Ferry, D.K.: Recent advances in Wigner function approaches. Appl. Phys. Rev. 5, 041104 (2018). https://doi.org/10.1063/1.5046663

    Article  Google Scholar 

  2. Leonhardt, U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  3. Schleich, W.P.: Quantum Optics in Phase Space. Wiley-VCH, Weinheim (2002)

    MATH  Google Scholar 

  4. Baker, G.A., McCarthy, I.E., Porter, C.E.: Application of the phase space quasi-probability distribution to the nuclear shell model. Phys. Rev. 120, 254 (1960)

    MathSciNet  MATH  Google Scholar 

  5. Shlomo, S., Prakash, M.: Phase space distribution of an n-dimensional harmonic oscillator. Nucl. Phys. A 357, 157 (1981)

    MathSciNet  Google Scholar 

  6. Belitsky, A., Ji, X., Yuan, F.: Quark imaging in the proton via quantum phase-space distributions. Phys. Rev. D 69, 074014 (2004)

    Google Scholar 

  7. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    MATH  Google Scholar 

  8. Weyl, H.: Quantenmechanik und gruppentheorie. Physik. Z. 46, 1 (1927)

    MATH  Google Scholar 

  9. Groenewold, H.: On the principles of elementary quantum mechanics. Physica 12, 405 (1946)

    MathSciNet  MATH  Google Scholar 

  10. Moyal, J.E.: Quantum mechanics as a statistical theory. Math. Proc. Camb. 45, 99 (1949)

    MathSciNet  MATH  Google Scholar 

  11. Imre, K., Ozizmir, E., Rosenbaum, M., Zweifel, P.F.: Wigner method in quantum statistical mechanics. J. Math. Phys. 8, 1097 (1967)

    Google Scholar 

  12. Tatarskii, V.I.: The Wigner representation of quantum mechanics. Sov. Phys. Uspekhi 26, 311 (1983)

    MathSciNet  Google Scholar 

  13. Hillery, M., OConnell, R., Scully, M., Wigner, E.: Distribution functions in physics: fundamentals. Phys. Rep. 106, 121 (1984)

    MathSciNet  Google Scholar 

  14. Jacoboni, C., Bordone, P.: The Wigner-function approach to non-equilibrium electron transport. Rep. Prog. Phys. 67, 1033 (2004)

    Google Scholar 

  15. Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62, 745 (1990)

    Google Scholar 

  16. Shifren, L., Ringhofer, C., Ferry, D.K.: A Wigner function-based quantum ensemble monte Carlo study of a resonant tunneling diode. IEEE Trans. Electron Dev. 50, 769 (2003)

    Google Scholar 

  17. Nedjalkov, M., Kosina, H., Schwaha, P.: Device modeling in the Wigner picture. J. Comput. Electron. 9, 218 (2010)

    Google Scholar 

  18. Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319 (2004)

    Google Scholar 

  19. Jonasson, O., Knezevic, I.: Coulomb-driven terahertz-frequency intrinsic current oscillations in a double-barrier tunneling structure. Phys. Rev. B 90, 165415 (2014)

    Google Scholar 

  20. Khalid, K.S., Schulz, L., Schulz, D.: Self-energy concept for the numerical solution of the Liouville-Von neumann equation. IEEE Trans. Nanotechnol. 16, 1053 (2017)

    Google Scholar 

  21. D. Querlioz and P. Dollfus, The Wigner Monte-Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence, ISTE ( Wiley, 2013)

  22. Frensley, W.R.: Transient response of a tunneling device obtained from the Wigner function. Phys. Rev. Lett. 57, 2853 (1986)

    Google Scholar 

  23. Kluksdahl, N.C., Kriman, A.M., Ferry, D.K., Ringhofer, C.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39, 7720 (1989)

    Google Scholar 

  24. Jensen, K.L., Buo, F.A.: Numerical simulation of intrinsic bistability and high-frequency current oscillations in resonant tunneling structures. Phys. Rev. Lett. 66, 1078 (1991)

    Google Scholar 

  25. Biegel, B.A., Plummer, J.D.: Comparison of self-consistency iteration options for the Wigner function method of quantum device simulation. Phys. Rev. B 54, 8070 (1996)

    Google Scholar 

  26. Bertoni, A., Bordone, P., Brunetti, R., Jacoboni, C.: The Wigner function for electron transport in mesoscopic systems. J. Phys. Condens. Matter 11, 5999 (1999)

    Google Scholar 

  27. Bordone, P., Pascoli, M., Brunetti, R., Bertoni, A., Jacoboni, C., Abramo, A.: Quantum transport of electrons in open nanostructures with the Wigner-function formalism. Phys. Rev. B 59, 3060 (1999)

    Google Scholar 

  28. Buot, F.A., Zhao, P., Cui, H.L., Woolard, D.L., Jensen, K.L., Krowne, C.M.: Emitter quantization and double hysteresis in resonant-tunneling structures: a nonlinear model of charge oscillation and current bistability. Phys. Rev. B 61, 5644 (2000)

    Google Scholar 

  29. Garcia-Garcia, J., Martin, F.: Simulation of multilayered resonant tunneling diodes using coupled Wigner and Boltzmann distribution function approaches. Appl. Phys. Lett. 77, 3412 (2000)

    Google Scholar 

  30. Dai, Z.H., Ni, J., Sun, Y.M., Wang, W.T.: Dynamical behavior of electron transport in AlGaAs/GaAs double-barrier structures under a high-frequency radiation field. Eur. Phys. J. B 60, 439 (2007)

    Google Scholar 

  31. Barraud, S.: Dissipative quantum transport in silicon nanowires based on Wigner transport equation. J. Appl. Phys. 110, 093710 (2011)

    Google Scholar 

  32. Wojcik, P., Adamowski, J., Wołoszyn, M., Spisak, B.J.: Intrinsic oscillations of spin current polarization in a paramagnetic resonant tunneling diode. Phys. Rev. B 86, 165318 (2012)

    Google Scholar 

  33. Schulz, L., Schulz, D.: Numerical analysis of the transient behavior of the non-equilibrium quantum Liouville equation. IEEE Trans. Nanotechnol. 17, 1197 (2018)

    Google Scholar 

  34. Querlioz, D., Dollfus, P., Do, V.-N., Bournel, A., Nguyen, V.L.: An improved Wigner Monte-Carlo technique for the self-consistent simulation of RTDs. J. Comput. Electron. 5, 443 (2006)

    Google Scholar 

  35. Querlioz, D., Nguyen, H.-N., Saint-Martin, J., Bournel, A., Galdin-Retailleau, S., Dollfus, P.: Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport. J. Comput. Electron. 8, 324 (2009)

    Google Scholar 

  36. Taj, D., Genovese, L., Rossi, F.: Quantum-transport simulations with the Wigner-function formalism: failure of conventional boundary-condition schemes. Europhys Lett 74, 1060 (2006)

    Google Scholar 

  37. Rosati, R., Dolcini, F., Iotti, R.C., Rossi, F.: Wigner-function formalism applied to semiconductor quantum devices: failure of the conventional boundary condition scheme. Phys. Rev. B 88, 035401 (2013)

    Google Scholar 

  38. J. Sellier, M. Nedjalkov, I. Dimov, and S. Selberherr, Two-dimensional transient Wigner particle model. In: 2013 International Conference on booktitle Simulation of Semiconductor Processes and Devices (SISPAD) ( 2013) pp. 404–407

  39. Jacoboni, C., Brunetti, R., Bordone, P., Bertoni, A.: Quantum transport and its simulation with the Wigner-function approach. Int. J. High. Speed. Electron. Syst. 11, 387 (2001)

    MATH  Google Scholar 

  40. Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645 (1983)

    Google Scholar 

  41. Shifren, L., Ferry, D.: Particle monte Carlo simulation of Wigner function tunneling. Phys. Lett. A 285, 217 (2001)

    MATH  Google Scholar 

  42. Ando, Y., Itoh, T.: Calculation of transmission tunneling current across arbitrary potential barriers. J. Appl. Phys. 61, 1497 (1987)

    Google Scholar 

  43. Dias, N.C., Prata, J.N.: Admissible states in quantum phase space. Ann. Phys. 313, 110 (2004)

    MathSciNet  MATH  Google Scholar 

  44. S. Ganguli, Quantum mechanics on phase space: geometry and motion of the Wigner Dist, Masters thesis, school Massachusetts Institude of Technology (1998)

  45. Dorda, A., Schürrer, F.: A Weno-Solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes. J. Comput. Phys. 284, 95 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Oriols, X., Ferry, D.K.: Why engineers are right to avoid the quantum reality offered by the orthodox theory? [point of view]. Proc. IEEE 109, 955 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was funded by DOE-BES, award DE-SC0008712 (S.S. and O.J.), and by UW-Madison through WARF/Fall Competition (M.K.E.) and the Splinter Professorship (I.K.). The authors gratefully acknowledge the compute resources and assistance of the UW-Madison Center for High Throughput Computing in the Department of Computer Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Knezevic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eryilmaz, M.K., Soleimanikahnoj, S., Jonasson, O. et al. Inflow boundary conditions and nonphysical solutions to the Wigner transport equation. J Comput Electron 20, 2039–2051 (2021). https://doi.org/10.1007/s10825-021-01793-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01793-6

Keywords

Navigation