Skip to main content
Log in

A comprehensive density-of-states model for oxide semiconductor thin film transistors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, a novel and comprehensive density-of-states model is presented to understand the origin of conductivity and the performance of p-type and n-type oxide semiconductor thin film transistors (TFTs). To validate the model, the simulated IV characteristics are compared with measured results of p-type Cu2O and SnO and n-type SnO2 TFTs. It was observed that cation vacancies are responsible for hole conduction in p-type TFTs, while anion vacancies and/or metal interstitials are responsible for electron conduction in n-type TFTs. This was observed by assigning the cation vacancies to acceptor-like Gaussian states and anion vacancies and/or metal interstitials to donor-like Gaussian states. The characteristic slopes in conduction/valence band-tail states are due to disorders present in the oxide semiconductors. The model successfully delivers the physical insight and pathway to circuit simulation of large-scale integration of pixel circuits in active matrix liquid crystal display/active matrix organic light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fortunato, E., Barquinha, P., Martins, R.: Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012). https://doi.org/10.1002/adma.201103228

    Article  Google Scholar 

  2. Hosono, H., Yasukawa, M., Kawazoe, H.: Novel oxide amorphous semiconductors: transparent conducting amorphous oxides. J. Non Cryst. Solids 203, 334–344 (1996). https://doi.org/10.1016/0022-3093(96)00367-5

    Article  Google Scholar 

  3. The Magic of Transparent Technology|Pro Display. https://prodisplay.com/the-magic-of-transparent-technology/. Accessed 17 Feb 2021

  4. Nomura, K., Ohta, H., Takagi, A., et al.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004). https://doi.org/10.1038/nature03090

    Article  Google Scholar 

  5. Lim, W., Jang, J.H., Kim, S.H., et al.: High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates. Appl. Phys. Lett. 93, 082102 (2008). https://doi.org/10.1063/1.2975959

    Article  Google Scholar 

  6. Chopra, K.L., Major, S., Pandya, D.K.: Transparent conductors—a status review. Thin Solid Films 102, 1–46 (1983)

    Article  Google Scholar 

  7. Lewis, B.G., Paine, D.C.: Applications and processing of transparent conducting oxides. MRS Bull. 25, 22–27 (2000). https://doi.org/10.1557/mrs2000.147

    Article  Google Scholar 

  8. Le, Y., Shao, Y., Xiao, X., et al.: Indium-tin-oxide thin-film transistors with in situ anodized Ta2O5 passivation layer. IEEE Electron Device Lett. 37, 603–606 (2016). https://doi.org/10.1109/LED.2016.2548785

    Article  Google Scholar 

  9. Cho, M.H., Seol, H., Yang, H., et al.: High-performance amorphous indium gallium zinc oxide thin-film transistors fabricated by atomic layer deposition. IEEE Electron Device Lett. 39, 688–691 (2018). https://doi.org/10.1109/LED.2018.2812870

    Article  Google Scholar 

  10. Martins, R., Nathan, A., Barros, R., et al.: Complementary metal oxide semiconductor technology with and on paper. Adv. Mater. 23, 4491–4496 (2011). https://doi.org/10.1002/adma.201102232

    Article  Google Scholar 

  11. Nandy, S., Banerjee, A., Fortunato, E., Martins, R.: A review on Cu2O and Cu-based p-type semiconducting transparent oxide materials: promising candidates for new generation oxide based electronics. Rev. Adv. Sci. Eng. 2, 273–304 (2013). https://doi.org/10.1166/rase.2013.1045

    Article  Google Scholar 

  12. Hogarth, C.A.: Hall constant of cadmium oxide [3]. Nature 167, 521–522 (1951). https://doi.org/10.1038/167521a0

    Article  Google Scholar 

  13. Cohen, M.H., Fritzsche, H., Ovshinsky, S.R.: Simple band model for amorphous semiconducting alloys. Phys. Rev. Lett. 22, 1065–1068 (1969). https://doi.org/10.1103/PhysRevLett.22.1065

    Article  Google Scholar 

  14. Nwachuku, A., Kuhn, M.: Tunneling into amorphous germanium films. Appl. Phys. Lett. 12, 163–165 (1968). https://doi.org/10.1063/1.1651936

    Article  Google Scholar 

  15. Davis, E.A., Mott, N.F.: Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903–922 (1970). https://doi.org/10.1080/14786437008221061

    Article  Google Scholar 

  16. Leenheer, A.J., Perkins, J.D., Van Hest, M.F.A.M., et al.: General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films. Phys. Rev. B—Condens. Matter Mater. Phys. 77, 1–5 (2008). https://doi.org/10.1103/PhysRevB.77.115215

    Article  Google Scholar 

  17. Hosono, H., Kikuchi, N., Ueda, N., Kawazoe, H.: Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. J. Non Cryst. Solids 198–200, 165–169 (1996). https://doi.org/10.1016/0022-3093(96)80019-6

    Article  Google Scholar 

  18. Robertson, J.: Disorder and instability processes in amorphous conducting oxides. Phys. Status Solidi Basic Res. 245, 1026–1032 (2008). https://doi.org/10.1002/pssb.200743458

    Article  Google Scholar 

  19. Kemp, M., Meunier, M., Tannous, C.G.: Simulation of the amorphous silicon static induction transistor. Solid State Electron 32, 149–157 (1989). https://doi.org/10.1016/0038-1101(89)90182-2

    Article  Google Scholar 

  20. Sallis, S., Butler, K.T., Quackenbush, N.F., et al.: Origin of deep subgap states in amorphous indium gallium zinc oxide: chemically disordered coordination of oxygen. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4883257

    Article  Google Scholar 

  21. Körner, W., Urban, D.F., Elsässer, C.: Origin of subgap states in amorphous In–Ga–Zn–O. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4826895

    Article  Google Scholar 

  22. Fung, T.C., Chuang, C.S., Chen, C., et al.: Two-dimensional numerical simulation of radio frequency sputter amorphous In–Ga–Zn–O thin-film transistors. J. Appl. Phys. 106, 1–10 (2009). https://doi.org/10.1063/1.3234400

    Article  Google Scholar 

  23. Silvaco: Technology computer aided design (TCAD) software (2013). https://doi.org/10.1201/b14860

  24. Kawazoe, H., Yasukawa, M., Hyodo, H., et al.: P-type electrical conduction in transparent thin films of CuAlO2. Nature 389, 939–942 (1997)

    Article  Google Scholar 

  25. Ogo, Y., Hiramatsu, H., Nomura, K., et al.: Tin monoxide as an s-orbital-based p-type oxide semiconductor: electronic structures and TFT application. Phys. Status Solidi 206, 2187–2191 (2009). https://doi.org/10.1002/pssa.200881792

    Article  Google Scholar 

  26. Raebiger, H., Lany, S., Zunger, A.: Origins of the p-type nature and cation deficiency in Cu2 O and related materials. Phys. Rev. B—Condens. Matter Mater. Phys. (2007). https://doi.org/10.1103/PhysRevB.76.045209

    Article  Google Scholar 

  27. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  MathSciNet  Google Scholar 

  28. Matsuzaki, K., Nomura, K., Yanagi, H., et al.: Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor. Appl. Phys. Lett. 93, 3–6 (2008). https://doi.org/10.1063/1.3026539

    Article  Google Scholar 

  29. Nam, D.-W., Cho, I.-T., Lee, J.-H., et al.: Active layer thickness effects on the structural and electrical properties of p-type Cu2O thin-film transistors. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. (2012). https://doi.org/10.1116/1.4764110

    Article  Google Scholar 

  30. Goltzene, A., Schwab, C., Wolf, H.C.: Carrier resonance in Cu2O. Solid State Commun. 18, 1565–1567 (1976). https://doi.org/10.1016/0038-1098(76)90394-X

    Article  Google Scholar 

  31. Urbach, F.: The long-wavelength edge of photographic sensitivity and of the electronic Absorption of Solids [8]. Phys. Rev. 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  Google Scholar 

  32. Caraveo-Frescas, J.A., Nayak, P.K., Al-Jawhari, H.A., et al.: Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano 7, 5160–5167 (2013). https://doi.org/10.1021/nn400852r

    Article  Google Scholar 

  33. Ogo, Y., Hiramatsu, H., Nomura, K., et al.: p-channel thin-film transistor using p-type oxide semiconductor. SnO 032113, 1–4 (2012). https://doi.org/10.1063/1.2964197

    Article  Google Scholar 

  34. Chen, P.C., Chiu, Y.C., Zheng, Z.W., et al.: Influence of plasma fluorination on p-type channel tin-oxide thin film transistors. J. Alloys Compd. 707, 162–166 (2017). https://doi.org/10.1016/j.jallcom.2016.11.294

    Article  Google Scholar 

  35. Rajshekar, K., Hsu, H.H., Kumar, K.U.M., et al.: Effect of plasma fluorination in p-type SnO TFTs: experiments, modeling, and simulation. IEEE Trans. Electron Devices 66, 1314–1321 (2019). https://doi.org/10.1109/TED.2019.2895042

    Article  Google Scholar 

  36. Togo, A., Oba, F., Tanaka, I., Tatsumi, K.: First-principles calculations of native defects in tin monoxide. Phys. Rev. B 74, 195128 (2006). https://doi.org/10.1103/PhysRevB.74.195128

    Article  Google Scholar 

  37. Çetin, K., Zunger, A.: Origins of coexistence of conductivity and transparency in SnO. Phys. Rev. Lett. 2, 7–10 (2002). https://doi.org/10.1103/PhysRevLett.88.095501

    Article  Google Scholar 

  38. Stewart, K.A., Gouliouk, V., Mcglone, J.M., et al.: Side-by-side comparison of single- and dual-active layer oxide TFTs: experiment and TCAD simulation. IEEE Trans. Electron Devices 64(10), 1–6 (2017)

    Article  Google Scholar 

  39. Stewart, K.A., Gouliouk, V., Keszler, D.A., Wager, J.F.: Sputtered boron indium oxide thin-film transistors. Solid-State Electron. 137, 80–84 (2017)

    Article  Google Scholar 

  40. Shang, Z.W., Ma, J., Liu, W.D., et al.: Performance investigation of an n-type tin-oxide thin film transistor by channel plasma processing. IEEE J. Electron Devices Soc. 8, 485–489 (2020). https://doi.org/10.1109/JEDS.2020.2986172

    Article  Google Scholar 

  41. Saji, K.J., Mary, A.P.R.: Tin oxide based p and n-type thin film transistors developed by RF sputtering. ECS J. Solid State Sci. Technol. 4, Q101–Q104 (2015). https://doi.org/10.1149/2.0091509jss

    Article  Google Scholar 

  42. Godinho, K.G., Walsh, A., Watson, G.W.: Energetic and electronic structure analysis of intrinsic defects in SnO2. J. Phys. Chem. C 113, 439–448 (2009). https://doi.org/10.1021/jp807753t

    Article  Google Scholar 

  43. Quackenbush, N.F., Allen, J.P., Scanlon, D.O., et al.: Origin of the bipolar doping behavior of SnO from X-ray spectroscopy and density functional theory. Chem. Mater. 25(15), 3114–3123 (2013). https://doi.org/10.1021/cm401343a

    Article  Google Scholar 

  44. Fortunato, E., Barros, R., Barquinha, P., et al.: Transparent P-type SnOx thin film transistors produced by reactive RF magnetron sputtering followed by low temperature annealing. Appl. Phys. Lett. 97, 52105 (2010). https://doi.org/10.1063/1.3469939

    Article  Google Scholar 

  45. Madelung, O., Rossler, U., Schulz, M., et al.: Cuprous oxide (Cu2O) dielectric constant. In: Non-Tetrahedrally Bonded Elements and Binary Compounds I, pp. 1–2 (2005). https://doi.org/10.1007/10681727_58

  46. Rajshekar, K., Hsu, H.H., Kumar, K.U.M., et al.: physical modeling of p-type fluorinated Al-doped tin-oxide thin film transistors. IEEE J. Electron Devices Soc. 8, 1–1 (2020). https://doi.org/10.1109/jeds.2020.3018463

    Article  Google Scholar 

  47. Singh, S., Chakrabarti, P.: Simulation fabrication and characterization of ZnO based thin film transistors grown by radio frequency magnetron sputtering. J. Nanosci. Nanotechnol. (2012). https://doi.org/10.1166/jnn.2012.5194

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Council of Scientific and Industrial Research (CSIR), Government of India, for the financial support (File No. (09/844(0046)/2018-EMR-I)). The authors thank Dr. C. H. Cheng of National Taiwan Normal University, Taiwan, Dr. Uma Mahendra Kumar, Vellore Institute of Technology, Vellore, and Dr. S. Parthiban of PSG Institute of Advanced Studies, Coimbatore, India. The authors also thank the Editor and the anonymous reviewers for their useful comments and suggestions.

Funding

No funding source information is available.

Author information

Authors and Affiliations

Authors

Contributions

Kadiyam Rajshekar contributed to the development of a comprehensive density-of-states model for oxide semiconductors and applied the model on thin film transistors of various oxide semiconductors through numerical simulations. D. Kannadassan has supervised and supported the research works with Kadiyam Rajshekar.

Corresponding author

Correspondence to D. Kannadassan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajshekar, K., Kannadassan, D. A comprehensive density-of-states model for oxide semiconductor thin film transistors. J Comput Electron 20, 2331–2341 (2021). https://doi.org/10.1007/s10825-021-01783-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01783-8

Keywords

Navigation