Skip to main content
Log in

A comparative study of broadband solar absorbers with different gold metasurfaces and MgF2 on tungsten substrates

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A comparative study of different highly efficient broadband solar absorbers based on gold resonators is presented. We compare the absorption parameters for cylindrical, hollow cylindrical, pyramid, and sawtooth-shaped gold resonator structures over a wide input incident range at solar frequencies from 100 to 1200 THz (250 to 3000 nm). The performance of the structures is quantified in terms of the absorption, reflectance, and transmittance. We also numerically calculate the behavior of the structures when varying geometric parameters including the overall dimensions, the substrate size, and the resonator thickness. The proposed absorber structures can trap > 98% of the input incident light over a wide range of the terahertz (THz) spectrum. The performance of the absorber structures is compared based on their response to AM1.5 spectral irradiance to confirm their wide absorption behavior across the solar range. The proposed absorber structures offer higher absorption efficiency over a wide range of the solar spectrum. The effect of the height and other physical dimensions on the absorption is also presented. These results will help to choose the operating band for wide-angle and short-angle applications. This article also provides suggestions for the design of selective band absorption by changing the dimensions of such structures. The proposed absorber structures could be applied to design highly efficient solar cells with stable wide-angle behavior across input incident waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Soukoulis, C.M., Wegener, M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–30 (2011). https://doi.org/10.1038/nphoton.2011.154

    Article  Google Scholar 

  2. Cai, W., Shalaev, V.: Optical Metamaterials: Fundamentals and Applications. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1151-3

    Book  Google Scholar 

  3. Watts, C.M., Liu, X., Padilla, W.J.: Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98-120 (2012). https://doi.org/10.1002/adma.201200674

    Article  Google Scholar 

  4. Yu, P., Yang, H., Chen, X., Yi, Z., Yao, W., Chen, J., et al.: Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy 158, 227–35 (2020). https://doi.org/10.1016/j.renene.2020.05.142

    Article  Google Scholar 

  5. Shen, X., Cui, T.J., Zhao, J., Ma, H.F., Jiang, W.X., Li, H.: Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 19, 9401 (2011). https://doi.org/10.1364/oe.19.009401

    Article  Google Scholar 

  6. Chen, H.-T.: Interference theory of metamaterial perfect absorbers. Opt. Express 20, 7165 (2012). https://doi.org/10.1364/OE.20.007165

    Article  Google Scholar 

  7. Liu, H., Xie, M., Ai, Q., Yu, Z.: Ultra-broadband selective absorber for near-perfect harvesting of solar energy. J. Quant. Spectrosc. Radiat. Transf. 266, 107575 (2021). https://doi.org/10.1016/j.jqsrt.2021.107575

    Article  Google Scholar 

  8. Roostaei, N., Mbarak, H., Monfared, S.A., Hamidi, S.M.: Plasmonic wideband and tunable absorber based on semi etalon nano structure in the visible region. Phys. Scr. 96, 035805 (2021). https://doi.org/10.1088/1402-4896/abdbf6

    Article  Google Scholar 

  9. Huang, L., Chowdhury, D.R., Ramani, S., Reiten, M.T., Luo, S.-N., Taylor, A.J., et al.: Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Opt. Lett. 37, 154 (2012). https://doi.org/10.1364/OL.37.000154

    Article  Google Scholar 

  10. Wang, B.X., Zhai, X., Wang, G.Z., Huang, W.Q., Wang, L.L.: Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics J. 7, 1–8 (2015). https://doi.org/10.1109/JPHOT.2014.2381633

    Article  Google Scholar 

  11. Zhu, P., Jay, Guo L.: High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack. Appl. Phys. Lett. 101, 241116 (2012). https://doi.org/10.1063/1.4771994

    Article  Google Scholar 

  12. Hossain, I., Samsuzzaman, M., Moniruzzaman, M., Bais, B.B., Singh, M.S.J., Islam, M.T.: Polarization-independent broadband optical regime metamaterial absorber for solar harvesting: a numerical approach. Chin. J. Phys. 71, 699–715 (2021). https://doi.org/10.1016/j.cjph.2021.04.007

    Article  MathSciNet  Google Scholar 

  13. Gokhale, V.J., Shenderova, O.A., McGuire, G.E., Rais-Zadeh, M.: Infrared absorption properties of carbon nanotube/nanodiamond based thin film coatings. J. Microelectromech. Syst. 23, 191–7 (2014). https://doi.org/10.1109/JMEMS.2013.2266411

    Article  Google Scholar 

  14. Deng, H., Li, Z., Stan, L., Rosenmann, D., Czaplewski, D., Gao, J., et al.: Broadband perfect absorber based on one ultrathin layer of refractory metal. Opt. Lett. 40, 2592 (2015). https://doi.org/10.1364/OL.40.002592

    Article  Google Scholar 

  15. Wang, B.-X., Xie, Q., Dong, G., Huang, W.-Q.: Simplified design for broadband and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics Technol. Lett. 30, 1115–8 (2018). https://doi.org/10.1109/LPT.2018.2834902

    Article  Google Scholar 

  16. Biabanifard, S.: A graphene-based dual-band THz absorber design exploiting the impedance-matching concept. J. Comput. Electron. 20, 38–48 (2021). https://doi.org/10.1007/s10825-020-01589-0

    Article  Google Scholar 

  17. Soltani, M., Najafi, A., Chaharmahali, I., Biabanifard, S.: A configurable two-layer four-bias graphene-based THz absorber. J. Comput. Electron. 19, 719–35 (2020). https://doi.org/10.1007/s10825-020-01462-0

    Article  Google Scholar 

  18. Bossard, J.A., Lin, L., Yun, S., Liu, L., Werner, D.H., Mayer, T.S.: Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8, 1517–24 (2014). https://doi.org/10.1021/nn4057148

    Article  Google Scholar 

  19. Chen, Y., Liu, F., Liu, H., Yi, F., Zhou, H., Tan, X., et al.: Meander line nanoantenna absorber for subwavelength terahertz detection. IEEE Photonics J. 10, 1–9 (2018). https://doi.org/10.1109/JPHOT.2018.2843530

    Article  Google Scholar 

  20. Yan, M., Dai, J., Qiu, M.: Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles. J. Opt. 16, 025002 (2014). https://doi.org/10.1088/2040-8978/16/2/025002

    Article  Google Scholar 

  21. Wang, H., Prasad Sivan, V., Mitchell, A., Rosengarten, G., Phelan, P., Wang, L.: Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mater. Sol. Cells 137, 235–42 (2015). https://doi.org/10.1016/j.solmat.2015.02.019

    Article  Google Scholar 

  22. Clemens, S., Iskander, M.F., Yun, Z., Rayno, J.: Hybrid genetic programming for the development of metamaterials designs with improved characteristics. IEEE Antennas Wirel. Propag. Lett. 17, 513–6 (2018). https://doi.org/10.1109/LAWP.2018.2800057

    Article  Google Scholar 

  23. Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–13 (2010). https://doi.org/10.1038/nmat2629

    Article  Google Scholar 

  24. Xiong, F., Zhang, J., Zhu, Z., Yuan, X., Qin, S.: Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping. Sci. Rep. 5, 16998 (2015). https://doi.org/10.1038/srep16998

    Article  Google Scholar 

  25. Zhang, J., Tian, J., Li, L.: A dual-band tunable metamaterial near-unity absorber composed of periodic cross and disk graphene arrays. IEEE Photonics J. 10, 1–12 (2018). https://doi.org/10.1109/JPHOT.2018.2815685

    Article  Google Scholar 

  26. Lenert, A., Bierman, D.M., Nam, Y., Chan, W.R., Celanović, I., Soljačić, M., et al.: A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–30 (2014). https://doi.org/10.1038/nnano.2013.286

    Article  Google Scholar 

  27. Akimov, Y.A., Koh, W.S.: Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21, 235201 (2010). https://doi.org/10.1088/0957-4484/21/23/235201

    Article  Google Scholar 

  28. Azad, A.K., Kort-Kamp, W.J.M., Sykora, M., Weisse-Bernstein, N.R., Luk, T.S., Taylor, A.J., et al.: Metasurface broadband solar absorber. Sci. Rep. 6, 20347 (2016). https://doi.org/10.1038/srep20347

    Article  Google Scholar 

  29. Nieto-Nieto, L.M., Ferrer-Rodríguez, J.P., Muñoz-Cerón, E., Pérez-Higueras, P.: Experimental set-up for testing MJ photovoltaic cells under ultra-high irradiance levels with temperature and spectrum control. Measurement 165, 108092 (2020). https://doi.org/10.1016/j.measurement.2020.108092

    Article  Google Scholar 

  30. Leitão, D., Torres, J.P.N., Fernandes, J.F.P.: Spectral irradiance influence on solar cells efficiency. Energies 13, 5017 (2020). https://doi.org/10.3390/en13195017

    Article  Google Scholar 

  31. Brüggemann, D., Wolfrum, B., de Silva, J.P.: Fabrication, properties and applications of gold nanopillars. Handb. Nanomater. Prop. (2014). https://doi.org/10.1007/978-3-642-31107-9_55

    Article  Google Scholar 

  32. Markelonis, A.R., Wang, J.S., Ullrich, B., Wai, C.M., Brown, G.J.: Nanoparticle film deposition using a simple and fast centrifuge sedimentation method. Appl. Nanosci. 5, 457–68 (2015). https://doi.org/10.1007/s13204-014-0338-x

    Article  Google Scholar 

  33. Wen, Q.-Y., Zhang, H.-W., Xie, Y.-S., Yang, Q.-H., Liu, Y.-L.: Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl. Phys. Lett. 95, 241111 (2009). https://doi.org/10.1063/1.3276072

    Article  Google Scholar 

  34. Cinel, N.A., Bütün, S., Özbay, E.: Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance. Opt. Express 20, 2587 (2012). https://doi.org/10.1364/OE.20.002587

    Article  Google Scholar 

  35. Tao, H., Landy, N.I., Bingham, C.M., Zhang, X., Averitt, R.D., Padilla, W.J.: A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16, 7181 (2008). https://doi.org/10.1364/OE.16.007181

    Article  Google Scholar 

  36. Gao, H., Peng, W., Chu, S., Cui, W., Liu, Z., Yu, L., et al.: Refractory ultra-broadband perfect absorber from visible to near-infrared. Nanomaterials 8, 1038 (2018). https://doi.org/10.3390/nano8121038

    Article  Google Scholar 

  37. Ke S, Wang B, Lu P. Plasmonic absorption enhancement in periodic cross-shaped graphene arrays. 2015 IEEE MTT-S Int Microw Work Ser Adv Mater Process RF THz Appl IEEE MTT-S IMWS-AMP 2015 - Proc 2015;23:4810–7. https://doi.org/10.1109/IMWS-AMP.2015.7325015.

  38. Rufangura, P., Sabah, C.: Graphene-based wideband metamaterial absorber for solar cells application. J. Nanophotonics 11, 036008 (2017). https://doi.org/10.1117/1.jnp.11.036008

    Article  Google Scholar 

  39. Avitzour, Y., Urzhumov, Y.A., Shvets, G.: Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys. Rev. B 79, 045131 (2009). https://doi.org/10.1103/PhysRevB.79.045131

    Article  Google Scholar 

  40. Sang, T., Gao, J., Yin, X., Qi, H., Wang, L., Jiao, H.: Angle-insensitive broadband absorption enhancement of graphene using a multi-grooved metasurface. Nanoscale Res. Lett. 14, 105 (2019). https://doi.org/10.1186/s11671-019-2937-7

    Article  Google Scholar 

  41. Liu, Z.Q., Shao, H.B., Liu, G.Q., Liu, X.S., Zhou, H.Q., Hu, Y., et al.: Λ 3/20000 Plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing. Appl. Phys. Lett. 104, 2–6 (2014). https://doi.org/10.1063/1.4867028

    Article  Google Scholar 

  42. Liu, B., Tang, C., Chen, J., Xie, N., Tang, H., Zhu, X., et al.: Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials. Nanoscale Res. Lett. 13, 153 (2018). https://doi.org/10.1186/s11671-018-2569-3

    Article  Google Scholar 

  43. Wu, C., Avitzour, Y., Shvets, G.: Ultra-thin wide-angle perfect absorber for infrared frequencies. Metamater. Fundam. Appl. 7029, 70290W (2008). https://doi.org/10.1117/12.797208

    Article  Google Scholar 

  44. Zhu, W., Zhao, X.: Metamaterial absorber with dendritic cells at infrared frequencies. J. Opt. Soc. Am. B 26, 2382 (2009). https://doi.org/10.1364/josab.26.002382

    Article  Google Scholar 

  45. Yan, H., Li, X., Chandra, B., Tulevski, G., Wu, Y., Freitag, M., et al.: Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol. 7, 330–4 (2012). https://doi.org/10.1038/nnano.2012.59

    Article  Google Scholar 

  46. Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342 (2010)

    Article  Google Scholar 

  47. Chen, J., Nie, H., Zha, T., Mao, P., Tang, C., Shen, X., et al.: Optical magnetic field enhancement by strong coupling in metamaterials. J. Light Technol. 36, 2791–5 (2018). https://doi.org/10.1109/JLT.2018.2822777

    Article  Google Scholar 

  48. Pu, M., Hu, C., Wang, M., Huang, C., Zhao, Z., Wang, C., et al.: Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19, 17413 (2011). https://doi.org/10.1364/OE.19.017413

    Article  Google Scholar 

  49. Wang, W., Yan, F., Tan, S., Zhou, H., Hou, Y.: Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators. Photonics Res. 5, 571 (2017). https://doi.org/10.1364/prj.5.000571

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Deanship of Scientific Research, Taif University Researchers Supporting Project number (TURSP-2020/08), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Nabih Zaki Rashed.

Ethics declarations

Conflict of interest

All the authors have read the manuscript and approved it for submission, and report no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorathiya, V., Lavadiya, S., AlGhamdi, A. et al. A comparative study of broadband solar absorbers with different gold metasurfaces and MgF2 on tungsten substrates. J Comput Electron 20, 1840–1850 (2021). https://doi.org/10.1007/s10825-021-01746-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01746-z

Keywords

Navigation