Skip to main content
Log in

A density functional theory study of the structural, electronic, and optical properties of XGaO3 (X  =  V, Nb) perovskites for optoelectronic applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

An ab initio study using density functional theory (DFT) is carried out to explore the structural, electronic, and optical properties of vanadium gallate (VGaO3) and niobium gallate (NbGaO3). The structural properties of these compounds are determined by using the full-potential linearized augmented plane wave (FP-LAPW) technique as implemented in WIEN2k with a standard functional, i.e., the Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA). In addition, the local density approximation plus Hubbard parameter (LDA + U) is employed to calculate the electronic bandgap and total and partial density of states (TDOS and PDOS), to overcome the limitation of the PBE-GGA functional in terms of underestimation of the electronic bandgap. The values computed for the indirect bandgap of VGaO3 and NbGaO3 are 0.45 and 0.51 eV, respectively, indicating that both materials are semiconductors in nature. The PDOS of the studied materials reveal that 3d-states of vanadium atoms, 4d-states of niobium atoms, and 2p-states of oxygen atoms form the valence band. Moreover, the Kramer–Kronig relations are used to compute the optical properties of the title compounds. The dielectric functions, refractive index, optical conductivity, absorption coefficient, extinction coefficient, energy loss function, and reflectivity of these materials are also computed. The results for the studied properties reveal that NbGaO3 exhibits better properties than VGaO3 for use in optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lauge-Kristensen: Renewable energy. In: Sustainable Practices in the Built Environment, Second Edition, Routledge (2008)

  2. Newell, P., Simms, A.: Towards a fossil fuel non-proliferation treaty. Clim. Policy. 20, 1043–1054 (2020). https://doi.org/10.1080/14693062.2019.1636759

    Article  Google Scholar 

  3. Withagen, C.: Pollution and exhaustibility of fossil fuels. Resour. Energy Econ. 16, 235–242 (1994). https://doi.org/10.1016/0928-7655(94)90007-8

    Article  Google Scholar 

  4. Hassan, A., Ilyas, S.Z., Jalil, A., Ullah, Z.: Monetization of the environmental damage caused by fossil fuels. Environ. Sci. Pollut. Res. (2021). https://doi.org/10.1007/s11356-020-12205-w

    Article  Google Scholar 

  5. Demirel, Y.: Renewable Energy. In: Energy, pp. 487–530. Springer (2021). https://doi.org/10.1007/978-3-030-56164-2

  6. York, R.: Do alternative energy sources displace fossil fuels? Nat. Clim. Chang. 2, 441–443 (2012). https://doi.org/10.1038/nclimate1451

    Article  Google Scholar 

  7. Abas, N., Kalair, A., Khan, N.: Review of fossil fuels and future energy technologies. Futures 69, 31–49 (2015). https://doi.org/10.1016/j.futures.2015.03.003

    Article  Google Scholar 

  8. Lenferna, G.A.: Can we equitably manage the end of the fossil fuel era? Energy Res. Soc. Sci. 35, 217–223 (2018). https://doi.org/10.1016/j.erss.2017.11.007

    Article  Google Scholar 

  9. Plantinga, A., Scholtens, B.: The financial impact of fossil fuel divestment. Clim. Policy. 21, 107–119 (2021). https://doi.org/10.1080/14693062.2020.1806020

    Article  Google Scholar 

  10. Arutyunov, V.S., Lisichkin, G.: V: Energy resources of the 21st century: problems and forecasts: Can renewable energy sources replace fossil fuels? Russ. Chem. Rev. 86, 777–804 (2017). https://doi.org/10.1070/rcr4723

    Article  Google Scholar 

  11. Perera, F.P.: Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ. Health Perspect. 125, 141–148 (2017). https://doi.org/10.1289/EHP299

    Article  Google Scholar 

  12. Greer, A., Ng, V., Fisman, D.: Climate change and infectious diseases in North America: the road ahead. CMAJ 178, 715–722 (2008). https://doi.org/10.1503/cmaj.081325

    Article  Google Scholar 

  13. Bennett, H., Jones, R., Keating, G., Woodward, A., Hales, S., Metcalfe, S.: Health and equity impacts of climate change in Aotearoa-New Zealand, and health gains from climate action. N. Z. Med. J. 127, 16–31 (2014). PMID: 25447246

  14. Hanif, I.: Impact of fossil fuels energy consumption, energy policies, and urban sprawl on carbon emissions in East Asia and the Pacific: a panel investigation. Energy Strateg. Rev. 21, 16–24 (2018). https://doi.org/10.1016/j.esr.2018.04.006

    Article  Google Scholar 

  15. World Energy Scenarios: Composing energy futures to 2050. World Energy Council (2013)

  16. World Energy Scenarios | 2019: Exploring innovation pathways to 2040. World Energy Council (2019)

  17. Tang, H., He, S., Peng, C.: A short progress report on high-efficiency perovskite solar cells. Nanoscale Res. Lett. 12, 410 (2017). https://doi.org/10.1186/s11671-017-2187-5

    Article  Google Scholar 

  18. Moussa, R.R., Mahmoud, A.H., Hatem, T.M.: A digital tool for integrating renewable energy devices within landscape elements: Energy-scape online application. J. Clean. Prod. 254, 119932 (2020). https://doi.org/10.1016/j.jclepro.2019.119932

    Article  Google Scholar 

  19. Li, L., Yuan, Z.-M., Gao, Y., Zhang, X., Tezdogan, T.: Investigation on long-term extreme response of an integrated offshore renewable energy device with a modified environmental contour method. Renew. Energy. 132, 33–42 (2019). https://doi.org/10.1016/j.renene.2018.07.138

    Article  Google Scholar 

  20. Feng, C., Feng, G., Zhao, Q., Li, S., Li, D.: Theoretical design for the non-toxic and earth-abundant perovskite solar cell absorber materials. Front. Mater. 7, 168 (2020). https://doi.org/10.3389/fmats.2020.00168

    Article  Google Scholar 

  21. Ju, M.-G., Chen, M., Zhou, Y., Garces, H.F., Dai, J., Ma, L., Padture, N.P., Zeng, X.C.: Earth-abundant nontoxic titanium(IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications. ACS Energy Lett. 3, 297–304 (2018). https://doi.org/10.1021/acsenergylett.7b01167

    Article  Google Scholar 

  22. Murtaza, G., Ahmad, I., Amin, B., Afaq, A., Maqbool, M., Maqssod, J., Khan, I., Zahid, M.: Investigation of structural and optoelectronic properties of BaThO3. Opt. Mater. (Amst) 33, 553–557 (2011). https://doi.org/10.1016/j.optmat.2010.10.052

    Article  Google Scholar 

  23. Tilley, R.J.D.: The ABX3 Perovskite structure. In: Perovskites: Structure-property relationships. pp. 1–41. John Wiley & Sons, Ltd, Chichester, UK (2016)

  24. Szuromi, P., Grocholski, B.: Natural and engineered perovskites. Science 358, 732–733 (2017). https://doi.org/10.1126/science.358.6364.732

    Article  Google Scholar 

  25. Choi, K.J., Biegalski, M., Li, Y.L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y.B., Pan, X.Q., Gopalan, V., Che, L.Q., Schlom, D.C., Eom, C.B.: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004). https://doi.org/10.1126/science.1103218

    Article  Google Scholar 

  26. Obara, H., Yamamoto, A., Lee, C.-H., Kobayashi, K., Matsumoto, A., Funahashi, R.: Thermoelectric properties of y-doped polycrystalline SrTiO3. Jpn. J. Appl. Phys. 43, L540–L542 (2004). https://doi.org/10.1143/JJAP.43.L540

    Article  Google Scholar 

  27. Fu, Q., Tang, X., Huang, B., Hu, T., Tan, L., Chen, L., Chen, Y.: Recent progress on the long-term stability of perovskite solar cells. Adv. Sci. 5, 1700387 (2018). https://doi.org/10.1002/advs.201700387

    Article  Google Scholar 

  28. Galagan, Y.: Stability of perovskite PV modules. J. Phys. Energy. 2, 021004 (2020). https://doi.org/10.1088/2515-7655/ab7077

    Article  Google Scholar 

  29. Labhasetwar, N., Saravanan, G., Kumar Megarajan, S., Manwar, N., Khobragade, R., Doggali, P., Grasset, F.: Perovskite-type catalytic materials for environmental applications. Sci. Technol. Adv. Mater. 16, 036002 (2015). https://doi.org/10.1088/1468-6996/16/3/036002

    Article  Google Scholar 

  30. Sabir, B., Murtaza, G., Mahmood, Q., Ahmad, R., Bhamu, K.C.: First principles investigations of electronics, magnetic, and thermoelectric properties of rare earth based PrYO3 (Y=Cr, V) perovskites. Curr. Appl. Phys. 17, 1539–1546 (2017). https://doi.org/10.1016/j.cap.2017.07.010

    Article  Google Scholar 

  31. Maeno, Y., Hashimoto, H., Yoshida, K., Nishizaki, S., Fujita, T., Bednorz, J.G., Lichtenberg, F.: Superconductivity in a layered perovskite without copper. Nature 372, 532–534 (1994). https://doi.org/10.1038/372532a0

    Article  Google Scholar 

  32. Samara, G.A.: Pressure and temperature dependence of the dielectric properties and phase transitions of the ferroelectric perovskites: PbTiO3 and BaTiO3. Ferroelectrics 2, 277–289 (1971). https://doi.org/10.1080/00150197108234102

    Article  Google Scholar 

  33. von Hippel, A., Breckenridge, R.G., Chesley, F.G., Tisza, L.: High dielectric constant ceramics. Ind. Eng. Chem. 38, 1097–1109 (1946). https://doi.org/10.1021/ie50443a009

    Article  Google Scholar 

  34. Li, W.M., Zhao, J.F., Cao, L.P., Hu, Z., Huang, Q.Z., Wang, X.C., Liu, Y., Zhao, G.Q., Zhang, J., Liu, Q.Q., Yu, R.Z., Long, Y.W., Wu, H., Lin, H.J., Chen, C.T., Li, Z., Gong, Z.Z., Guguchia, Z., Kim, J.S., Stewart, G.R., Uemura, Y.J., Uchida, S., Jin, C.Q.: Superconductivity in a unique type of copper oxide. Proc. Natl. Acad. Sci. 116, 12156–12160 (2019). https://doi.org/10.1073/pnas.1900908116

    Article  Google Scholar 

  35. Srikanth, M., Ozório, M.S., Da Silva, J.L.F.: Optical and dielectric properties of lead perovskite and iodoplumbate complexes: an ab-initio study. Phys. Chem. Chem. Phys. 22, 18423–18434 (2020). https://doi.org/10.1039/D0CP03512B

    Article  Google Scholar 

  36. Röhm, H., Leonhard, T., Schulz, A.D., Wagner, S., Hoffmann, M.J., Colsmann, A.: Ferroelectric properties of perovskite thin films and their implications for solar energy conversion. Adv. Mater. 31, 1806661 (2019). https://doi.org/10.1002/adma.201806661

    Article  Google Scholar 

  37. Politova, E.D., Kaleva, G.M., Mosunov, A. V., Sadovskaya, N. V., Kiselev, D.A., Kislyuk, A.M., Ilina, T.S., Stefanovich, S. Yu., Fortalnova, E.A.: Structure, ferroelectric and local piezoelectric properties of KNN-based perovskite ceramics. Ferroelectrics. 560, 38–47 (2020). https://doi.org/10.1080/00150193.2020.1722881

  38. Tan, Z.-K., Moghaddam, R.S., Lai, M.L., Docampo, P., Higler, R., Deschler, F., Price, M., Sadhanala, A., Pazos, L.M., Credgington, D., Hanusch, F., Bein, T., Snaith, H.J., Friend, R.H.: Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014). https://doi.org/10.1038/nnano.2014.149

    Article  Google Scholar 

  39. Zhang, K., Zhu, N., Zhang, M., Wang, L., Xing, J.: Opportunities and challenges in perovskite LED commercialization. J. Mater. Chem. C. 9, 3795–3799 (2021). https://doi.org/10.1039/D1TC00232E

    Article  Google Scholar 

  40. Obayashi, H., Sakurai, Y., Gejo, T.: Perovskite-type oxides as ethanol sensors. J. Solid State Chem. 17, 299–303 (1976). https://doi.org/10.1016/0022-4596(76)90135-3

    Article  Google Scholar 

  41. Chen, Q., Zhang, Y., Liu, S., Han, T., Chen, X., Xu, Y., Meng, Z., Zhang, G., Zheng, X., Zhao, J., Cao, G., Liu, G.: Switchable perovskite photovoltaic sensors for bioinspired adaptive machine vision. Adv. Intell. Syst. (2020). https://doi.org/10.1002/aisy.202000122

    Article  Google Scholar 

  42. Trujillo Herrera, C., Labram, J.G.: A perovskite retinomorphic sensor. Appl. Phys. Lett. (2020). https://doi.org/10.1063/5.0030097

    Article  Google Scholar 

  43. Hoefler, S.F., Trimmel, G., Rath, T.: Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatshefte für Chemie - Chem. Mon. 148, 795–826 (2017). https://doi.org/10.1007/s00706-017-1933-9

    Article  Google Scholar 

  44. Park, N.: Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater. 10(1–14), 1903106 (2020). https://doi.org/10.1002/aenm.201903106

    Article  Google Scholar 

  45. da Silva, F.S., de Souza, T.M.: Novel materials for solid oxide fuel cell technologies: a literature review. Int. J. Hydrogen Energy. 42, 26020–26036 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.105

    Article  Google Scholar 

  46. Kubicek, M., Bork, A.H., Rupp, J.L.M.: Perovskite oxides – a review on a versatile material class for solar-to-fuel conversion processes. J. Mater. Chem. A. 5, 11983–12000 (2017). https://doi.org/10.1039/C7TA00987A

    Article  Google Scholar 

  47. Kingon, A.I., Streiffer, S.K., Basceri, C., Summerfelt, S.R.: High-permittivity perovskite thin films for dynamic random-access memories. MRS Bull. 21, 46–52 (1996). https://doi.org/10.1557/S0883769400035910

    Article  Google Scholar 

  48. Nenasheva, E.A., Kanareykin, A.D., Kartenko, N.F., Dedyk, A.I., Karmanenko, S.F.: Ceramics materials based on (Ba, Sr)TiO3 solid solutions for tunable microwave devices. J. Electroceramics. 13, 235–238 (2004). https://doi.org/10.1007/s10832-004-5104-0

    Article  Google Scholar 

  49. Dimos, D., Mueller, C.H.: Perovskite thin films for high-frequency capacitor applications. Annu. Rev. Mater. Sci. 28, 397–419 (1998). https://doi.org/10.1146/annurev.matsci.28.1.397

    Article  Google Scholar 

  50. Protesescu, L., Yakunin, S., Bodnarchuk, M.I., Krieg, F., Caputo, R., Hendon, C.H., Yang, R.X., Walsh, A., Kovalenko, M.V.: Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color. Gamut. Nano Lett. 15, 3692–3696 (2015). https://doi.org/10.1021/nl5048779

    Article  Google Scholar 

  51. Muralt, P., Polcawich, R.G., Trolier-McKinstry, S.: Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull. 34, 658–664 (2009). https://doi.org/10.1557/mrs2009.177

    Article  Google Scholar 

  52. Sebastian, M.T.: Dielectric Materials for Wireless Communication. Elsevier (2008). https://doi.org/10.1016/B978-0-08-045330-9.X0001-5

  53. Kim, H., Han, J.S., Kim, S.G., Kim, S.Y., Jang, H.W.: Halide perovskites for resistive random-access memories. J. Mater. Chem. C. 7, 5226–5234 (2019). https://doi.org/10.1039/C8TC06031B

    Article  Google Scholar 

  54. Liang, J., Zhu, G., Wang, C., Zhao, P., Wang, Y., Hu, Y., Ma, L., Tie, Z., Liu, J., Jin, Z.: An all-inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging. Nano Energy 52, 239–245 (2018). https://doi.org/10.1016/j.nanoen.2018.07.060

    Article  Google Scholar 

  55. Chakhmouradian, A.R., Woodward, P.M.: Celebrating 175 years of perovskite research: a tribute to Roger H. Mitchell. Phys. Chem. Miner. 41, 387–391 (2014). https://doi.org/10.1007/s00269-014-0678-9

    Article  Google Scholar 

  56. Ortega, L., Martin, S.: Introduction to perovskites: A historical perspective. In: Arul, N., Nithya, V. (eds.) Revolution of perovskite, pp. 1–44. Springer, Singapore (2020)

    Google Scholar 

  57. Taib, M.F.M., Hussin, N.H., Samat, M.H., Hassan, O.H., Yahya, M.Z.A.: Structural, electronic and optical properties of BaTiO3 and BaFeO3 from first principles LDA+U study. Int. J. Electroact. Mater. 4, 14–17 (2016)

    Google Scholar 

  58. Liu, H.-R., Yang, J.-H., Xiang, H.J., Gong, X.G., Wei, S.-H.: Origin of the superior conductivity of perovskite Ba(Sr)SnO3. Appl. Phys. Lett. 102, 112109 (2013). https://doi.org/10.1063/1.4798325

    Article  Google Scholar 

  59. Yaseen, M., Ashfaq, A., Akhtar, A., Asghar, R., Ambreen, H., Butt, M.K., Noreen, S., Ur Rehman, S., Bibi, S., Ramay, S.M., Murtaza, A.: Investigation of LaAlO3 perovskite compound for optoelectronic and thermoelectric devices under pressure. Mater. Res. Express. 7, 015907 (2020). https://doi.org/10.1088/2053-1591/ab6110

    Article  Google Scholar 

  60. Babu, K.E., Murali, N., Babu, K.V., Shibeshi, P.T., Veeraiah, V.: Investigation of optoelectronic properties of cubic perovskite LaGaO3. AIP Conf. Proc. 1620, 173–178 (2014). https://doi.org/10.1063/1.4898236

    Article  Google Scholar 

  61. Yaakob, M.K., Ridzwan, M.H., Taib, M.F.M., Li, L., Hassan, O.H., Yahya, M.Z.A.: First-principles investigation of the ground state, structural phase transition, and magnetic ordering of strained BiVO3. J. Appl. Phys. 125, 082532 (2019). https://doi.org/10.1063/1.5053942

    Article  Google Scholar 

  62. Ekuma, C.E., Jarrell, M., Moreno, J., Bagayoko, D.: First principle electronic, structural, elastic, and optical properties of strontium titanate. AIP Adv. 2, 012189 (2012). https://doi.org/10.1063/1.3700433

    Article  Google Scholar 

  63. Lokman Ali, M.: The structural, elastic, electronic and optical properties of cubic perovskite SrVO3 compound: an ab initio study. Int. J. Mater. Sci. Appl. 5, 202–206 (2016). https://doi.org/10.11648/j.ijmsa.20160505.14

    Article  Google Scholar 

  64. Hossain, K.M., Rubel, M.H.K., Rahaman, M.M., Hossain, M.M., Hossain, M.I., Khatun, A.A., Hossain, J., Islam, A.K.M.A.: A comparative theoretical study on physical properties of synthesized AVO3 (A = Ba, Sr, Ca, Pb) perovskites. http://arxiv.org/abs/1905.01437

  65. Khandy, S.A., Gupta, D.C.: Investigation of structural, magneto-electronic, and thermoelectric response of ductile SnAlO3 from high-throughput DFT calculations. Int. J. Quantum Chem. 117, 1–6 (2017). https://doi.org/10.1002/qua.25351

    Article  Google Scholar 

  66. Roknuzzaman, M., Ostrikov, K.K., Wang, H., Du, A., Tesfamichael, T.: Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Sci. Rep. 7, 1–8 (2017). https://doi.org/10.1038/s41598-017-13172-y

    Article  Google Scholar 

  67. Hnamte, L., Thapa, R.K.: Study of electronic and optical properties of vanadium-based double perovskite oxide: Ba2VNbO6. IJCER. 8(6), 67–71 (2018)

    Google Scholar 

  68. Wang, H., Huang, H., Wang, B.: First-principles study of structural, electronic, and optical properties of ZnSnO3. Solid State Commun. 149, 1849–1852 (2009). https://doi.org/10.1016/j.ssc.2009.07.009

    Article  Google Scholar 

  69. Kuma, S., Woldemariam, M.M.: Structural, electronic, lattice dynamic, and elastic properties of SnTiO3 and PbTiO3 using density functional theory. Adv. Condens. Matter Phys. (2019). https://doi.org/10.1155/2019/3176148

    Article  Google Scholar 

  70. Hussain, M.I., Khalil, R.M.A., Hussain, F., Imran, M., Rana, A.M., Kim, S.: Investigations of structural, electronic and optical properties of TM-GaO3 (TM = Sc, Ti, Ag) perovskite oxides for optoelectronic applications: A first principles study. Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab619c

    Article  Google Scholar 

  71. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J., Laskowsk, R., Tran, F., Marks, L.: WIEN2k: An Augmented Plan Wave Plus Local Orbitals Program for Calculating Crystal Properties. (2019)

  72. Schwarz, K., Blaha, P.: Solid state calculations using WIEN2k. Comput. Mater. Sci. 28, 259-273 (2003). https://doi.org/10.1016/S0927-0256(03)00112-5

    Article  Google Scholar 

  73. Schwarz, K.: DFT calculations of solids with LAPW and WIEN2k. J. Solid State Chem. (2003). https://doi.org/10.1016/S0022-4596(03)00213-5

    Article  Google Scholar 

  74. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  75. Himmetoglu, B., Floris, A., De Gironcoli, S., Cococcioni, M.: Hubbard-corrected DFT energy functionals: the LDA+U description of correlated systems. Int. J. Quant. Chem. 114, 14–49 (2014). https://doi.org/10.1002/qua.24521

    Article  Google Scholar 

  76. Cole, A.H.: Réaumur’s Memoirs on Steel and Iron. A translation from the original printed in 1722 by Anneliese Grünhaldt Sisco. Edited with an introduction and notes by Cyril Stanley Smith. Chicago: University of Chicago Press, 1956. Pp. xxxiv, 396, plus 17 plates with explanations. $6.00. J. Econ. Hist. 17, 476–477 (1957). https://doi.org/10.1017/s0022050700086927

  77. Haines, J., Léger, J.M., Bocquillon, G.: Synthesis and design of superhard materials. Annu. Rev. Mater. Sci. (2001). https://doi.org/10.1146/annurev.matsci.31.1.1

    Article  Google Scholar 

  78. Tian, Y., Xu, B., Zhao, Z.: Microscopic theory of hardness and design of novel superhard crystals. Int. J. Ref. Met. Hard Mater. 33, 93–106 (2012). https://doi.org/10.1016/j.ijrmhm.2012.02.021

    Article  Google Scholar 

  79. Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U. S. A. 30, 244–247 (1944). https://doi.org/10.1073/pnas.30.9.244

    Article  MathSciNet  MATH  Google Scholar 

  80. Hilal, M., Rashid, B., Khan, S.H., Khan, A.: Investigation of electro-optical properties of InSb under the influence of spin-orbit interaction at room temperature. Mater. Chem. Phys. (2016). https://doi.org/10.1016/j.matchemphys.2016.09.009

    Article  Google Scholar 

  81. Kador, L.: Kramers-Kronig relations in nonlinear optics. Appl. Phys. Lett. (1995). https://doi.org/10.1063/1.114235

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful and acknowledge the services of Dr. Abdul Ghaffar, Assistant Professor of English, for proofreading the manuscript to edit and improve the English language.

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Awais Rouf.

Ethics declarations

Conflict of interest

The authors declare that there was no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouf, S.A., Hussain, M.I., Mumtaz, U. et al. A density functional theory study of the structural, electronic, and optical properties of XGaO3 (X  =  V, Nb) perovskites for optoelectronic applications. J Comput Electron 20, 1484–1495 (2021). https://doi.org/10.1007/s10825-021-01718-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01718-3

Keywords

Navigation