Skip to main content
Log in

The design, analysis, and cost estimation of a generic adder and subtractor using the layered T (LT) logic reduction methodology with a quantum-dot cellular-automata-based approach

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The quantum-dot cellular automata (QCA) is considered to be one of the ground-breaking nanotechnologies developed over the last two decades. A layered T (LT) logic cell library is constructed herein, and the methodology is extended to generic adder and subtractor module designs. The two proposed algorithms lead to more efficient QCA layout designs for an n-bit ripple carry adder (RCA) and subtractor based on an effective clock zone assignment approach. The suggested one-, four-, and eight-bit RCAs and subtractors surpass most of their existing counterparts by offering lower effective area and cell complexity. A comparative analysis is presented regarding the complexity, irreversible power dissipation, and Costα of the proposed n-bit layouts from a cost estimation purview.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Macucci, M.: Quantum Cellular Automata Theory, Experimentation and Prospects. Imperial College Press, London (2006)

    Book  Google Scholar 

  2. Tans, S.J., Verschueren, A.R.M., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49–52 (1998)

    Article  Google Scholar 

  3. Flatté, M.E., Vignale, G.: Unipolar spin diodes and transistors. Appl. Phys. Lett. 78(9), 1273–1275 (2001). https://doi.org/10.1063/1.1348317

    Article  Google Scholar 

  4. Yang, T., Kiehl, R.A., Chua, L.O.: Tunneling phase logic cellular nonlinear networks. Int. J. Bifurcat. Chaos 11(12), 2895–2911 (2001). https://doi.org/10.1142/S0218127401004145

    Article  Google Scholar 

  5. Heath, J.R., Ratner, M.A.: Molecular electronics. Phys. Today 56(5), 43–49 (2003). https://doi.org/10.1063/1.1583533

    Article  Google Scholar 

  6. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology (1993). https://doi.org/10.1088/0957-4484/4/1/004

    Article  Google Scholar 

  7. Kummamuru, R.K., et al.: Power gain in a quantum-dot cellular automata latch. Appl. Phys. Lett. 81(7), 1332–1334 (2002). https://doi.org/10.1063/1.1499511

    Article  Google Scholar 

  8. Quantum mechanics classical results, modern systems, and visualized examples.

  9. Hennessy, K., Lent, C. S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 19(5), 1752–1755 (2001). doi: https://doi.org/10.1116/1.1394729.

  10. Graziano, M., Pulimeno, A., Wang, R., Wei, X., Roch, M.R., Piccinini, G.: Process variability and electrostatic analysis of molecular QCA. ACM J. Emerg. Technol. Comput. Syst. (2015). https://doi.org/10.1145/2738041

    Article  Google Scholar 

  11. Niemier, M.T., Kogge, P.M.: Origins and Motivations for design rules in QCA. Nano Quantum Mol. Comput. (2006). https://doi.org/10.1007/1-4020-8068-9_9

    Article  Google Scholar 

  12. Mukherjee, C., Sukla, A.S., Basu, S.S., Chakrabarty, R., Khan, A., De, D.: Layered T full adder using quantum-dot cellular automata. 2016, doi: https://doi.org/10.1109/CONECCT.2015.7383867.

  13. Liu, W., Lu, L., Neill, O., Member, S.: A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans. Nanotechnol. 13(3), 476–487 (2014)

    Article  Google Scholar 

  14. Gardelis, S., Smith, C.G., Cooper, J., Ritchie, D.A., Linfield, E.H., Jin, Y.: Evidence for transfer of polarization in a quantum dot cellular automata cell consisting of semiconductor quantum dots. Phys. Rev. B Condens. Matter Mater. Phys., 67(3), 333021–333024 (2003), doi: https://doi.org/10.1103/PhysRevB.67.033302.

  15. Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Science. 277(5328), 928–930 (1997). https://doi.org/10.1126/science.277.5328.928

    Article  Google Scholar 

  16. Isaksen, B., Lent, C.S.: Molecular quantum-dot cellular automata. Proc. IEEE Conf. Nanotechnol. 1, 5–8 (2003). https://doi.org/10.1109/NANO.2003.1231700

    Article  Google Scholar 

  17. Cowburn, R.P., Welland, M.E.: Room temperature magnetic quantum cellular automata. Science 287(5457), 1466–1468 (2000). https://doi.org/10.1126/science.287.5457.1466

    Article  Google Scholar 

  18. Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology : quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006). https://doi.org/10.1109/JPROC.2006.875791

    Article  Google Scholar 

  19. Snider, G.S.L., et al.: Quantum-dot cellular automata. Microelectron. Eng. 47, 261–263 (1999)

    Article  Google Scholar 

  20. Momenzadeh, M., Huang, J., Tahoori, M.B., Lombardi, F.: Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation. IEEE Trans Comput. Des. Integr. Circuits Syst. 24(12), 1881–1893 (2005). https://doi.org/10.1109/TCAD.2005.852667

    Article  Google Scholar 

  21. Das, K., De, D.: A study on diverse nanostructure for implementing logic gate design for QCA. Int. J. Nanosci. 10(1), 263–269 (2011). https://doi.org/10.1142/S0219581X11007892

    Article  Google Scholar 

  22. Sen, B., Sengupta, A., Dalui, M., Sikdar, B.K.: Design of testable universal logic gate targeting minimum wire-crossings in QCA logic circuit. In: Proceedings 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools, DSD 2010, pp. 613–620 (2010), https://doi.org/10.1109/DSD.2010.114.

  23. Mukherjee, C., Roy, S.S., Panda, S., Maji, B.: T-gate : concept of partial polarization in quantum dot cellular automata. Proc. VLSI Des. Test (2016). https://doi.org/10.1109/ISVDAT.2016.8064844

    Article  Google Scholar 

  24. Khanday, F.A., Kant, N.A., Bangi, Z.A., Shah, N.A.: A novel universal (FNZ) gate in quantum dot cellular automata (QCA). In: IMPACT 2013 - Proceedings of the International Conference on Multimedia Signal Processing and Communication Technologies (2013). https://doi.org/10.1109/MSPCT.2013.6782130.

  25. Mukherjee, C., Panda, S., Mukhopadhyay, A.K., Maji, B.: Synthesis of standard functions and generic Ex-OR module using layered T gate. Int. J. High Perform. Syst. Archit. 7(2), 70–86 (2017)

    Article  Google Scholar 

  26. Mukherjee, C., Panda, S., Mukhopadhyay, A.K., Maji, B.: QCA gray code converter circuits using LTEx methodology. Int. J. Theor. Phys. 57(7), 2068–2092 (2018). https://doi.org/10.1007/s10773-018-3732-4

    Article  MathSciNet  MATH  Google Scholar 

  27. Nejad, M.Y., Mosleh, M.: A review on QCA multiplexer designs. Majlesi J. Electr. Eng. 11(2), 69–79 (2017)

    Google Scholar 

  28. Afrooz, S., Navimipour, N.J.: Memory designing using quantum-dot cellular automata: systematic literature review, classification and current trends. J. Circuits, Syst. Comput. (2017). https://doi.org/10.1142/S0218126617300045.

  29. Singh, G., Sarin, R.K., Raj, B.: A review of quantum-dot cellular automata based adders. Int. J. Hybrid Inf. Technol. 10(4), 41–58 (2017). https://doi.org/10.14257/ijhit.2017.10.4.04

    Article  Google Scholar 

  30. Wang, W., Walus, K., Jullien, G.A.: Quantum-dot cellular automata adders. Proc. IEEE Conf. Nanotechnol. 1, 461–464 (2003). https://doi.org/10.1109/NANO.2003.1231818

    Article  Google Scholar 

  31. Cho, H., Swartzlander, E.E.: Adder designs and analyses for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 6(3), 374–383 (2007). https://doi.org/10.1109/TNANO.2007.894839

    Article  Google Scholar 

  32. Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 176–183 (2007)

  33. Haruehanroengra, S., Wang, W.: Efficient design of QCA adder structures (2007). https://doi.org/10.4028/www.scientific.net/ssp.121-123.553.

  34. Javid, M., Mohamadi, K.: Characterization and tolerance of QCA full adder under missing cells defects (2010). https://doi.org/10.1109/ICMENS.2009.22.

  35. Liu, W., Lu, L., O’Neill, M., Swartzlander, E.E.: Cost-efficient decimal adder design in Quantum-dot cellular automata. In: ISCAS 2012 - 2012 IEEE International Symposium on Circuits and Systems, pp. 1347–1350 (2012). doi: https://doi.org/10.1109/ISCAS.2012.6271491.

  36. Pudi, V., Sridharan, K.: Low complexity design of ripple carry and Brent-Kung adders in QCA. IEEE Trans. Nanotechnol. (2012). https://doi.org/10.1109/TNANO.2011.2158006

    Article  Google Scholar 

  37. Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80(7), 1404–1414 (2014). https://doi.org/10.1016/j.jcss.2014.04.012

    Article  MathSciNet  MATH  Google Scholar 

  38. Farazkish, R.: A new quantum-dot cellular automata fault-tolerant full-adder. J. Comput. Electron. 14(2), 506–514 (2015). https://doi.org/10.1007/s10825-015-0668-2

    Article  Google Scholar 

  39. Farazkish, R., Khodaparast, F.: Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst. 39(6), 426–433 (2015). https://doi.org/10.1016/j.micpro.2015.04.004

    Article  Google Scholar 

  40. Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. (2015). https://doi.org/10.1109/TNANO.2015.2409117

    Article  Google Scholar 

  41. Kumar, R., Ghosh, B., Gupta, S.: Adder design using a 5-input majority gate in a novel ‘multilayer gate design paradigm’ for quantum dot cellular automata circuits. J. Semicond. (2015). https://doi.org/10.1088/1674-4926/36/4/045001

    Article  Google Scholar 

  42. Hashemi, S., Navi, K.: A novel robust QCA full-adder. Procedia Mater. Sci. 11, 376–380 (2015). https://doi.org/10.1016/j.mspro.2015.11.133

    Article  Google Scholar 

  43. Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectronics J. (2015). https://doi.org/10.1016/j.mejo.2015.03.023

    Article  Google Scholar 

  44. Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016). https://doi.org/10.1016/j.jocs.2016.02.005

    Article  MathSciNet  Google Scholar 

  45. Ahmad, P.Z., Quadri, S.M.K., Tantary, S.M., Wani, G.M., Ahmad, F., Bahar, A.N.: Design of novel QCA-based half/full subtractors. Nanomater. Energy (2017). https://doi.org/10.1680/jnaen.15.00020

    Article  Google Scholar 

  46. Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Res. Phys. (2017). https://doi.org/10.1016/j.rinp.2017.04.005

    Article  Google Scholar 

  47. Barughi, Y.Z., Heikalabad, S.R.: A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int. J. Theor. Phys. 56(9), 2848–2858 (2017). https://doi.org/10.1007/s10773-017-3453-0

    Article  MATH  Google Scholar 

  48. Balali, M., Rezai, A.: Design of low-complexity and high-speed coplanar four-bit ripple carry adder in QCA technology. Int. J. Theor. Phys. (2018). https://doi.org/10.1007/s10773-018-3720-8

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, L., Xie, G.: Novel designs of full adder in quantum-dot cellular automata technology. J. Supercomput. (2018). https://doi.org/10.1007/s11227-018-2481-8

    Article  Google Scholar 

  50. Adelnia, Y., Rezai, A.: A novel adder circuit design in quantum-dot cellular automata technology. Int. J. Theor. Phys. 58(1), 184–200 (2019). https://doi.org/10.1007/s10773-018-3922-0

    Article  MATH  Google Scholar 

  51. Zoka, S., Gholami, M.: A novel efficient full adder–subtractor in QCA nanotechnology. Int. Nano Lett. (2018). https://doi.org/10.1007/s40089-018-0256-0

    Article  Google Scholar 

  52. Raj, M., Gopalakrishnan, L., Ko, S.B.: Fast quantum-dot cellular automata adder/subtractor using novel fault tolerant exclusive-or gate and full adder. Int. J. Theor. Phys. (2019). https://doi.org/10.1007/s10773-019-04184-7

    Article  MathSciNet  MATH  Google Scholar 

  53. Ahmadpour, S.S., Mosleh, M.: New designs of fault-tolerant adders in quantum-dot cellular automata. Nano Commun. Netw. 19, 10–25 (2019). https://doi.org/10.1016/j.nancom.2018.11.001

    Article  Google Scholar 

  54. Lu, L., Liu, W., O’Neill, M., Swartzlander, E.E.: QCA Systolic array design. IEEE Trans. Comput. (2013). https://doi.org/10.1109/TC.2011.234

    Article  MathSciNet  MATH  Google Scholar 

  55. Fazzion, E., Fonseca, O. L., Nacif, J. A. M., Neto, O. P. V., Fernandes, A. O., Silva, D. S.: A quantum-dot cellular automata processor design. In: 2014 27th Symposium on Integrated Circuits and Systems Design (SBCCI), pp. 1–7 (2014). IEEE, doi: https://doi.org/10.1145/2660540.2660997.

  56. Ruetz, P.: Adder which employs both carry look-ahead and carry select techniques. US5898596A (1999)

Download references

Acknowledgements

The authors would like to thank Prof. Debdatta Banerjee for her literary contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiradeep Mukherjee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, C., Panda, S., Mukhopadhyay, A.K. et al. The design, analysis, and cost estimation of a generic adder and subtractor using the layered T (LT) logic reduction methodology with a quantum-dot cellular-automata-based approach. J Comput Electron 20, 1611–1624 (2021). https://doi.org/10.1007/s10825-021-01712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01712-9

Keywords

Navigation