Skip to main content
Log in

A four-bias three-layer graphene-based THz absorber

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Wave absorbers are considered to be fundamental building blocks for the manipulation of light. Almost all optical systems exploit absorbers to realize some functions. A highly tunable wide-band THz absorber is presented herein. Utilizing a dual-bias scheme with a single graphene layer leads to greater freedom to control the absorption response, while a conventional periodic array of graphene ribbons and a layer of graphene sheet are also exploited. Also, a circuit model representation for all the constituent parts of the proposed absorber is developed with an evolved design methodology. According to the simulation results, wide-band absorption from 3.5 to 6 THz is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Chaharmahali, I., Biabanifard, S., Mosleh, M.: Graphene-based multi-layers THz absorber: circuit model representation. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.165596

    Article  Google Scholar 

  2. Vafaei, M., Amini, A., Siadatan, A.: Breakthrough in CO2 measurement with a chamberless NDIR optical gas sensor. IEEE Trans. Instrum. Meas. 69, 2258–2268 (2020). https://doi.org/10.1109/TIM.2019.2920702

    Article  Google Scholar 

  3. Aghaee, T., Orouji, A.A.: Dual-band terahertz absorber based on graphene periodic arrays of disks and ribbons: circuit model approach. J. Comput. Electron. (2020). https://doi.org/10.1007/s10825-020-01581-8

    Article  Google Scholar 

  4. Aghaee, T., Orouji, A.A.: Highly tunable multi-band THz absorber with circuit model representation using multi-bias scheme. Int J Numer Modell Electron Netw. Dev. Fields (2020). https://doi.org/10.1002/jnm.2777

    Article  Google Scholar 

  5. Aghaee, T., Orouji, A.A.: Reconfigurable multi-band, graphene-based THz absorber: circuit model approach. Res. Phys. 16, 102855 (2020)

    Google Scholar 

  6. Aghaee, T., Orouji, A.A.: Circuit modeling of ultra-broadband terahertz absorber based on graphene array periodic disks. Int. J. Numer. Modell. Electron. Netw. Devi Fields 25, 16–39 (2019)

    Google Scholar 

  7. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  8. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, H.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Google Scholar 

  9. Soltani, M., Najafi, A., Chaharmahali, I., Biabanifard, S.: A configurable two-layer four-bias graphene-based THz absorber. J. Comput. Electron. (2020). https://doi.org/10.1007/s10825-020-01462-0

    Article  Google Scholar 

  10. Najafi, A., Soltani, M., Chaharmahali, I., Biabanifard, S.: Reliable design of THz absorbers based on graphene patterns: exploiting genetic algorithm. Optik 203, 163924 (2020)

    Article  Google Scholar 

  11. Mencarelli, D., Pierantoni, L., Stocchi, M., Bellucci, S.: Efficient and versatile graphene-based multilayers for EM field absorption. Appl. Phys. Lett. 109, 093103 (2016)

    Article  Google Scholar 

  12. Baldelli, M., Pierontoni, L., Belucci, S.: Learning by using graphene multilayers: an educational app for analyzing the electromagnetic absorption of a graphene multilayer based on a network model. IEEE Microwave Mag. 17, 44–51 (2015)

    Article  Google Scholar 

  13. Yadav, V.S., Ghosh, S.K., Bhattacharyya, S., Das, S.: Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence. Appl. Opt. 57, 8720–8726 (2018)

    Article  Google Scholar 

  14. Xiong, H., Tang, M.-C., Li, M., Li, D., Jiang, Y.-N.: Equivalent circuit method analysis of graphene-metamaterial (GM) absorber. Plasmonics 13, 857–862 (2018)

    Article  Google Scholar 

  15. Peiqi, Yu., Chen, X., Yi, Z., Tang, Y., Yang, H., Zhou, Z., Duan, T., Cheng, S., Zhang, J., Yi, Y.: A numerical research of wideband solar absorber based on refractory metal from visible to near infrared. Opt. Mater. 97, 109400 (2019)

    Article  Google Scholar 

  16. Khavasi, A., Rejaei, B.: Analytical modeling of graphene ribbons as optical circuit elements. IEEE J. Quantum Electron. 50, 397–403 (2014)

    Article  Google Scholar 

  17. Barzegar-Parizi, S., Rejaei, B., Khavasi, A.: Analytical circuit model for periodic arrays of graphene disks. IEEE J. Quantum Electron. 51, 1–7 (2015)

    Article  Google Scholar 

  18. Khavasi, A.: Design of ultra-broadband graphene absorber using circuit theory. J. Opt. Soc. Am. B 32, 1941–1946 (2015)

    Article  Google Scholar 

  19. Jozani, K.J., Abbasi, M., Asiyabi, T., Biabanifard, M., Biabanifard, S.: Multi-bias, graphene-based reconfigurable THz absorber/reflector. Optik 198, 163248 (2019)

    Article  Google Scholar 

  20. Biabanifard, M., Asgari, S., Biabanifard, S.,  Abrishamian, M.S.: Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik 182, 433–442 (2019)

    Article  Google Scholar 

  21. Biabanifard, S., Biabanifard, M., Asgari, S., Asadi, S., Mustapha, C.E.: Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons. Opt. Commun. 427, 418–425 (2018)

    Article  Google Scholar 

  22. Chaharmahali, I., Biabanifard, S.: Ultra-broadband terahertz absorber based on graphene ribbons. Optik 172, 1026–1033 (2018)

    Article  Google Scholar 

  23. Biabanifard, M., Biabanifard, S., Hosseini, S.J.: Design and comparison of terahertz graphene antenna: ordinary dipole fractal dipole spiral bow-tie and log-periodic. Eng. Technol. 25, 36 (2018). https://doi.org/10.19080/ETOAJ.2018.02.555584

    Article  Google Scholar 

  24. Cheng, D.K.: Field and wave electromagnetics, 2nd edn. Pearson Education (1989)

  25. https://topas.com/products/topas-coc-polymers

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Amini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barimani, S., Amini, A. & Chaharmahali, I. A four-bias three-layer graphene-based THz absorber. J Comput Electron 20, 1332–1342 (2021). https://doi.org/10.1007/s10825-021-01700-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01700-z

Keywords

Navigation