Skip to main content
Log in

The spin-polarized dwell time in a parallel double δ-magnetic-barrier nanostructure

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The dwell time of electrons in a parallel double δ-magnetic-barrier (MB) nanostructure constructed by patterning an asymmetric ferromagnetic stripe on both the top and bottom of an InAs/AlxIn1−xAs heterostructure is calculated. Because the electron spins interact with the structural magnetic fields, the dwell time depends on the electron spins. Moreover, both the magnitude and sign of the spin-polarized dwell time can be modified by changing the magnetic field, the applied voltage, and the separation between the two δ-MBs. The electron spins can thus be separated in the time dimension, and such a magnetic nanostructure could serve as a controllable temporal spin splitter for use in spintronics device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wolf, S.A.: Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)

    Article  Google Scholar 

  2. Zŭtic, I., Fabian, J., Sarma, S.D.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004)

    Article  Google Scholar 

  3. Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., van Wees, B.J.: Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, 4790 (2000)

    Article  Google Scholar 

  4. Ohno, Y., Young, D.K., Beschoten, B., Matsukura, F., Ohno, H., Awschalom, D.D.: Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787 (1999)

    Article  Google Scholar 

  5. Fiederling, R., Keim, M., Reuscher, G., Ossau, W., Schmidt, G., Waag, A., Molenkamp, L.W.: Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790 (1999)

    Article  Google Scholar 

  6. Matulis, A., Peeters, F.M., Vasilopoulos, P.: Wave-vector-dependent tunneling through magnetic barriers. Phys. Rev. Lett. 72, 1518 (1994)

    Article  Google Scholar 

  7. Kubrak, V., Rahman, F., Gallagher, B.L., Main, P.C., Henini, M.: Magnetoresistance of a two-dimensional electron gas due to a single magnetic barrier and its use for nanomagnetometry. Appl. Phys. Lett. 74, 2507 (1999)

    Article  Google Scholar 

  8. Majumdar, A.: Effects of intrinsic spin on electronic transport through magnetic barriers. Phys. Rev. B 54, 11911 (1996)

    Article  Google Scholar 

  9. Guo, Y., Gu, B.L., Zeng, Z., Yu, J.Z., Kawazoe, Y.: Electron-spin polarization in magnetically modulated quantum structures. Phys. Rev. B 62, 2635 (2000)

    Article  Google Scholar 

  10. Papp, G., Peeters, F.M.: Spin filtering in a magnetic–electric barrier structure. Appl. Phys. Lett. 78, 2184 (2001)

    Article  Google Scholar 

  11. Xu, H.Z., Shi, Z.: Strong wave-vector filtering and nearly 100% spin polarization through resonant tunneling antisymmetrical magnetic structure. Appl. Phys. Lett. 81, 691 (2002)

    Article  Google Scholar 

  12. Zhai, F., Xu, H.Q., Guo, Y.: Tunable spin polarization in a two-dimensional electron gas modulated by a ferromagnetic metal stripe and a Schottky metal strip. Phys. Rev. B 70, 085308 (2004)

    Article  Google Scholar 

  13. Xu, H.Z., Zhang, Y.F.: Spin-filter devices based on resonant tunneling antisymmetrical magnetic/semiconductor hybrid structures. Appl. Phys. Lett. 84, 1955 (2004)

    Article  Google Scholar 

  14. Papp, G., Vasilopoulos, P., Peeters, F.M.: Spin polarization in a two-dimensional electron gas modulated periodically by ferromagnetic and Schottky metal stripes. Phys. Rev. B 72, 115315 (2005)

    Article  Google Scholar 

  15. Koga, T., Nitta, J., Datta, S., Takayanagi, H.: Spin-filter device based on the Rashba effect using a nonmagnetic resonant tunneling diode. Phys. Rev. Lett. 88, 126601 (2002)

    Article  Google Scholar 

  16. Chen, X., Li, C.F., Ban, Y.: Tunable lateral displacement and spin beam splitter for ballistic electrons in two-dimensional magnetic-electric nanostructures. Phys. Rev. B 77, 073307 (2008)

    Article  Google Scholar 

  17. Lu, M.W., Zhang, G.L., Chen, S.Y.: Spin-electron beam splitters based on magnetic barrier nanostructures. J. Appl. Phys. 112, 014309 (2012)

    Article  Google Scholar 

  18. Liu, X.H., Zhang, G.L., Kong, Y.H., Li, A.H., Fu, X.: Spin spatial splitter based on a magnetic nanostructure with zero average magnetic field. Appl. Surf. Sci. 313, 545 (2014)

    Article  Google Scholar 

  19. Lu, M.W., Chen, S.Y., Huang, X.H., Zhang, G.L.: Spin splitter based on magnetically confined semiconductor microstructure modulated by spin-orbit coupling. IEEE J. Electron Devices 6, 227 (2018)

    Article  Google Scholar 

  20. Shen, L.H., Ma, W.Y., Liu, G.X., Yuan, L.: Spatial spin splitter based on a hybrid ferromagnet, Schottky metal and semiconductor nanostructure. J. Magn. Magn. Mater. 401, 231 (2016)

    Article  Google Scholar 

  21. Liu, G.X., Ma, W.Y., Shen, L.H.: Manipulating spin spatial splitter in a δ-doped semiconductor nanostructure with zero average magnetic field. Superlatt. Microstruct. 88, 204 (2015)

    Article  Google Scholar 

  22. Lu, M.W., Chen, S.Y., Zhang, G.L., Huang, X.H.: Calculations of spin-polarized Goos–Hänchen displacement in magnetically confined GaAs/AlxGa1−xAs nanostructure modulated by spin–orbit couplings. J. Phys. Condens. Matter 30, 145302 (2018)

    Article  Google Scholar 

  23. Guo, Y., Shang, C.E., Chen, X.Y.: Spin-dependent delay time and the Hartman effect in tunneling through diluted-magnetic-semiconductor/semiconductor heterostructures. Phys. Rev. B 72, 045356 (2005)

    Article  Google Scholar 

  24. Yamada, N.: Unified derivation of tunneling times from decoherence functionals. Phys. Rev. Lett. 93, 170401 (2004)

    Article  Google Scholar 

  25. Landauer, R., Martin, Th.: Barrier interaction time in tunneling. Rev. Mod. Phys. 66, 217 (1994)

    Article  Google Scholar 

  26. Winful, H.G.: Delay time and the Hartman effect in quantum tunneling. Phys. Rev. Lett. 91, 260401 (2003)

    Article  Google Scholar 

  27. Nogaret, A., Bending, S.J., Henini, M.: Resistance resonance effects through magnetic edge states. Phys. Rev. Lett. 84, 2231 (2000)

    Article  Google Scholar 

  28. Lu, M.W., Chen, S.Y., Zhang, L.D.: Controllable momentum filter based on a magnetically confined semiconductor heterostructure With a δ-doping. IEEE Trans. Electron Devices 64, 1825 (2017)

    Article  Google Scholar 

  29. Slobodskyy, A., Gould, C., Slobodskyy, T., Becker, C.R., Schmidt, G., Molenkamp, L.W.: Voltage-controlled spin selection in a magnetic resonant tunneling diode. Phys. Rev. Lett. 90, 246601 (2003)

    Article  Google Scholar 

  30. Papp, G., Peeters, F.M.: Erratum: “Spin filtering in a magnetic-electric barrier structure” [Appl. Phys. Lett. 78, 2184 (2001)]. Appl. Phys. Lett. 79, 3198 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Fund of Hunan Provincial Education Department (grant no. 18C1290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai-Yan Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SY., Zhang, GL., Cao, XL. et al. The spin-polarized dwell time in a parallel double δ-magnetic-barrier nanostructure. J Comput Electron 20, 785–790 (2021). https://doi.org/10.1007/s10825-020-01653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01653-9

Keywords

Navigation