Skip to main content

Advertisement

Log in

An efficient VLSI circuit partitioning algorithm based on satin bowerbird optimization (SBO)

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In partitioning, a circuit is recursively divided into several subcircuits so that each can be efficiently and independently designed with the main objective of reducing the cut-cost. Partitioning is a first step in the very large-scale integration (VLSI) physical design process, and all the other physical design steps such as floorplanning, placement, pin assignment, and routing depend on its outcome. The partitioning determines the overall quality of the final layout, since the use of an incorrect partitioning can degrade the performance of all subsequent phases of the physical design process. A novel partitioning algorithm based on the concept of satin bowerbird optimization (SBO) is proposed herein. The bioinspired SBO algorithm chooses the initial partitions randomly then utilizes the concepts of fitness value evaluation and group migration to improve the cut-cost. The performance of the proposed algorithm is evaluated using parameters such as the cut-cost and time complexity based on simulations with ISCAS’85 benchmark circuits. The performance parameters of the circuits, i.e., area, power, and delay, are evaluated before and after partitioning. The proposed bioinspired SBO algorithm is compared with similar bioinspired algorithms such as ant colony optimization, particle swam optimization, genetic, and firefly algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)

    Article  Google Scholar 

  2. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: Proceedings of the 19th Design Automation Conference, pp. 175–181 (1982)

  3. Krishnamurthy, B.: An improved min-cut algorithm for partitioning VLSI networks. IEEE Trans. Comput. C-33(5), 438–446 (1984)

    Article  Google Scholar 

  4. Banerjee, P., Jones, M.H., Sargent, J.S.: Parallel simulated annealing algorithms for cell placement on hypercube multiprocessors. IEEE Trans. Parallel Distrib. Syst. 1(1), 91–106 (1990)

    Article  Google Scholar 

  5. Fiduccia, C.M., Mattheyses, B.M.: A linear-time heuristic for improving network partitions. In: Proceedings of the 19th Design Automation Conference, pp. 175–181 (1982)

  6. Wei, Y.C., Cheng, C.K.: Ratio cut partitioning for hierarchical designs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 10(7), 911–921 (1991)

    Article  Google Scholar 

  7. Dutt, S.: Cluster-aware iterative improvement techniques for partitioning large VLSI circuits. ACM Trans. Des. Autom. Electron. Syst. 7(1), 91–121 (2002)

    Article  Google Scholar 

  8. Iqbal, S.M.A., Monir, M.I., Sayeed, T.: A concurrent approach to clustering algorithm with applications to VLSI domain. In: Proceedings of the 11th International Conference on Computer and Information Technology, pp. 476–480 (2008)

  9. Li, J.H., Behjat, L.: A connectivity based clustering algorithm with application to VLSI circuit partitioning. IEEE Trans. Circuits Syst. II Express Briefs 53(5), 384–388 (2006)

    Article  Google Scholar 

  10. Barnard, S.T., Simon, H.D.: Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurr. Pract. Exp. 6(2), 101–117 (1994)

    Article  Google Scholar 

  11. Lang, K.J.: Fixing two weaknesses of the spectral method. In: Proceedings of the 2005 Neural Information Processing Systems, pp. 715–722 (2005)

  12. Baruch, Z.O.L.T.A.N., Cret, O., Pusztai, K.A.L.M.A.N.: Genetic algorithm for circuit partitioning. In: Fifth International Conference on Engineering of Modern Electric Systems: Section Computer Science and Control Systems, pp. 19–23 (1999)

  13. Soper, A.J., Walshaw, C., Cross, M.: A combined evolutionary search and multilevel optimization approach to graph-partitioning. J. Global Optim. 29(2), 225–241 (2004)

    Article  MathSciNet  Google Scholar 

  14. Deep, A., Singh, B., Singh, A., Singh, J.: A Simple Efficient Circuit Partitioning by Genetic Algorithm (2009)

  15. Gupta, N., Garg, D., Gupta, S.: Genetic algorithms based partitioning of VLSI circuit systems. In: IJCA Proceedings on National Conference on Future Aspects of Artificial intelligence in Industrial Automation 2012 NCFAAIIA, vol. 2, pp. 15–19 (2012)

  16. Kao, Y.T., Zahara, E., Kao, I.W.: A hybridized approach to data clustering. Expert Syst. Appl. 34(3), 1754–1762 (2008)

    Article  Google Scholar 

  17. Yang, F., Sun, T., Zhang, C.: An efficient hybrid data clustering method based on K-harmonic means and Particle Swarm Optimization. Expert Syst. Appl. 36(6), 9847–9852 (2009)

    Article  Google Scholar 

  18. Niknam, T., Amiri, B., Olamaei, J., Arefi, A.: An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering. J. Zhejiang Univ. Sci. A 10(4), 512–519 (2009)

    Article  Google Scholar 

  19. Wang, Y., Cai, Z.: A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems. Front. Comput. Sci. China 3(1), 38–52 (2009)

    Article  Google Scholar 

  20. Peng, S.J., Chen, G.L., Guo, W.Z.: A multi-objective algorithm based on discrete PSO for VLSI partitioning problem. In: Quantitative Logic and Soft Computing 2010, pp. 651–660. Springer, Berlin, Heidelberg (2010)

  21. Zadegan, S.M.R., Mirzaie, M., Sadoughi, F.: Ranked k-medoids: a fast and accurate rank-based partitioning algorithm for clustering large datasets. Knowl.-Based Syst. 39, 133–143 (2013)

    Article  Google Scholar 

  22. Manikandan, R., Leela, V.: Effective clustering algorithms for VLSI circuit partitioning problems. Contemp. Eng. Sci. 7(19), 923–929 (2014)

    Article  Google Scholar 

  23. Sait, S.M., Youseff, H.: VLSI Physical Design Automation. McGraw Hill, New Jersey (1995)

    Google Scholar 

  24. Areibi, S.: Recursive and flat partitioning for VLSI circuit design. In: The 13th International Conference on Microelectronics, Rabat, Morocco, pp. 237–240 (2001)

  25. Lawler, E.L., Levitt, K.N., Turner, J.: Module clustering to minimize delay in digital networks. IEEE Trans. Comput. C-18(1), 47–57 (1969)

    Article  Google Scholar 

  26. Schweikert, D.G., Kernighan, B.W.: A proper model for the partitioning of electrical circuits. In: Proceedings of the ACM/IEEE Design Automation Workshop, pp. 57–62 (1972)

  27. Sanchis, L.A.: Multiple way network partitioning. IEEE Trans. Comput. 38(1), 62–81 (1989)

    Article  Google Scholar 

  28. Cong, J, Hagen, L., Kahng, A.: Net partitions yield better module partitions. In: 29th ACM/IEEE Design Automation Conference, Anaheim, CA, USA, pp. 47–52 (1992)

  29. Shawki, A., Vannelli, A.: Circuit partitioning using a tabu search approach. In: IEEE International Symposium on Circuits and Systems, Chicago, IL, pp. 1643–1646 (1993)

  30. Shahookar, K., Mazumder: Genetic multiway partitioning. In: IEEE 8th International Conference on VLSI Design, New Delhi, India, pp. 365–369 (1995)

  31. Cane, J., Manikas, T.: Genetic algorithms vs simulated annealing: a comparison of approaches for solving circuit partitioning problem, Technical report, University of Pittsburgh

  32. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: applications in VLSI domain. In: IEEE 34th Design Automation Conference, Anaheim, California, United States. ACM Press New York, NY, USA, pp. 526-529 (1997)

  33. Areibi, S.: Memetic algorithms for VLSI physical design: implementation issues. In: Genetic and Evolutionary Computation Conference, San Francisco, California, pp. 140–145 (2001)

  34. Ababei, C., Navaratnasothie, S., Bazargan, K., Karypis, G.: Multiobjective circuit partitioning for cutsize and path-base delay minimization. In: IEEE International Conference on Computer aided Design (2002)

  35. Palesi, M., Givargis, T.: Multi-objective design space exploration using genetic algorithms. In: Proceedings of the 10th International Symposium on Hardware/Software Co-design. ACM Press, Estes Park, Colorado, pp. 67–72 (2002)

  36. Stitt, G., Lysecky, R., Vahid, F.: Dynamic hardware/software partitioning: a first approach. In: ACM/IEEE Design Automation Conference 2003, Anaheim, California, USA, pp. 250–255 (2003)

  37. Banos, R., Gil, C., Montoya, M.G., Ortega, J.: A parallel evolutionary algorithm for circuit partitioning. In: Proceedings of the Eleventh Euromicro Conference on Parallel, Distributed, and Network Based Processing (2003)

  38. Sait, S.M., El-Maleh, A.H., Al-Abaji, R.H.: Enhancing performance of iterative heuristics for VLSI net list partitioning. In: ICECS-2003, pp. 507–510 (2003)

  39. Kolar, D., Divokovic Puksec, J., Branica, I.: VLSI circuit partitioning using simulated annealing algorithm. In: IEEE Melecon, Dubrovnik, Croatia (2004)

  40. Ghafari, P., Mirhard, E., Anis, M., Areibi, S., Elmary, M.: A low power partitioning methodology by maximizing sleep time and minimizing cut nets, pp. 368–371. IWSOC, Bauf, Alberta, Canada (2005)

    Google Scholar 

  41. Wang, G., Gang, W., Kastner, R.: Application partitioning on programmable platforms using ant colony optimization. J. Embedded Comput. 2(1), 2006 (2006)

    Google Scholar 

  42. Lee, Z.J., Su, S.F., Chuang, C.C., Liu, K.H.: Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment. Appl. Soft Comput. 8(1), 55–78 (2008)

    Article  Google Scholar 

  43. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

    Article  Google Scholar 

  44. Kennedy, J., Eberhart, Particle swarm optimization. In: Proceedings IEEE International Conference on Neural Networks, vol. IV, Perth, Australia, pp. 1942–1948 (1995). ISBN 1558605959

  45. Chellamani, G.K., Chandramani, P.V.: An optimized methodical energy management system for residential consumers considering price-driven demand response using satin bowerbird optimization. J. Electr. Eng. Technol. 2020, 955–967 (2020)

    Article  Google Scholar 

  46. Samareh Moosavi, S.H., Khatibi Bardsiri, V.: Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Eng. Appl. Artif. Intell. 60, 1–15 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pavithra Guru.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavithra Guru, R., Vaithianathan, V. An efficient VLSI circuit partitioning algorithm based on satin bowerbird optimization (SBO). J Comput Electron 19, 1232–1248 (2020). https://doi.org/10.1007/s10825-020-01491-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01491-9

Keywords

Navigation