Skip to main content
Log in

A single-gate SOI nanosheet junctionless transistor at 10-nm gate length: design guidelines and comparison with the conventional SOI FinFET

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We present a detailed study on the n-channel single-gate junctionless transistor (JLT) at the \({10}-\hbox{nm}\) node. We investigate the influence of its structural parameters on the on-state current and the off-state leakage current. Furthermore, we show that the use of high-k spacers may not be advantageous in future nanoscale junctionless transistors and confirm this argument by simulation. We also present the results of our investigation on process variations, including the sensitivity of the JLT to random dopant fluctuations as well as the gate work function using Monte Carlo simulations. These results are then compared with those of a conventional FinFET. Finally, we provide design guidelines for JLTs at \({10}-\hbox{nm}\) gate length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., et al.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225 (2010)

    Article  Google Scholar 

  2. Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.P.: Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5), 053511 (2009)

    Article  Google Scholar 

  3. Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Theory of the junctionless nanowire FET. IEEE Trans. Electron Dev. 58(9), 2903–2910 (2011)

    Article  Google Scholar 

  4. Lee, C.W., Borne, A., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., et al.: High-temperature performance of silicon junctionless MOSFETs. IEEE Trans. Electron Device 57(3), 620–625 (2010)

    Article  Google Scholar 

  5. Ghosh, D., Parihar, M.S., Armstrong, G.A., Kranti, A.: High-performance junctionless MOSFETs for ultralow-power analog/RF applications. IEEE Electron Device Lett. 33(10), 1477–1479 (2012)

    Article  Google Scholar 

  6. Lee, C.W., Nazarov, A.N., Ferain, I., Akhavan, N.D., Yan, R., Razavi, P., et al.: Low subthreshold slope in junctionless multigate transistors. Appl. Phys. Lett. 96(10), 102106 (2010)

    Article  Google Scholar 

  7. Doria, R.T., Pavanello, M.A., Trevisoli, R.D., de Souza, M., Lee, C.W., Ferain, I., et al.: Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Devices 58(8), 2511–2519 (2011)

    Article  Google Scholar 

  8. Singh Parihar, M., Ghosh, D., Kranti, A.: Single transistor latch phenomenon in junctionless transistors. J. Appl. Phys. 113(18), 184503 (2013)

    Article  Google Scholar 

  9. Parihar, M.S., Ghosh, D., Kranti, A.: Ultra low power junctionless MOSFETs for subthreshold logic applications. IEEE Trans. Electron Devices 60(5), 1540–1546 (2013)

    Article  Google Scholar 

  10. Lee, C.W., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., et al.: Performance estimation of junctionless multigate transistors. Solid-State Electron. 54(2), 97–103 (2010)

    Article  Google Scholar 

  11. Parihar, M.S., Ghosh, D., Armstrong, G.A., Yu, R., Razavi, P., Kranti, A.: Bipolar effects in unipolar junctionless transistors. Appl. Phys. Lett. 101(9), 093507 (2012)

    Article  Google Scholar 

  12. Colinge, J.P., Kranti, A., Yan, R., Lee, C.W., Ferain, I., Yu, R., et al.: Junctionless nanowire transistor (JNT): properties and design guidelines. Solid-State Electron. 65, 33–37 (2011)

    Article  Google Scholar 

  13. Park, C.H., Ko, M.D., Kim, K.H., Baek, R.H., Sohn, C.W., Baek, C.K., et al.: Electrical characteristics of 20-nm junctionless Si nanowire transistors. Solid-State Electron. 73, 7–10 (2012)

    Article  Google Scholar 

  14. Jhan, Y.R., Thirunavukkarasu, V., Wang, C.P., Wu, Y.C.: Performance evaluation of silicon and germanium ultrathin body (1 nm) junctionless field-effect transistor with ultrashort gate length (1 nm and 3 nm). IEEE Electron Device Lett. 36(7), 654–656 (2015)

    Article  Google Scholar 

  15. Choi, S.J., Moon, D.I., Kim, S., Duarte, J.P., Choi, Y.K.: Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron Device Lett. 32(2), 125–127 (2010)

    Article  Google Scholar 

  16. Gundapaneni, S., Ganguly, S., Kottantharayil, A.: Enhanced electrostatic integrity of short-channel junctionless transistor with high-k spacers. IEEE Electron Device Lett. 32(10), 1325–1327 (2011)

    Article  Google Scholar 

  17. Gundapaneni, S., Ganguly, S., Kottantharayil, A.: Bulk planar junctionless transistor (BPJLT): an attractive device alternative for scaling. IEEE Electron Device Lett. 32(3), 261–263 (2011)

    Article  Google Scholar 

  18. Soree, B., Magnus, W.: Silicon nanowire pinch-off FET: basic operation and analytical model. In: 2009 10th International Conference on Ultimate Integration of Silicon. IEEE. pp. 245–248 (2009)

  19. Tai, C.H., Lin, J.T., Eng, Y.C., Lin, P.H.: A novel high-performance junctionless vertical MOSFET produced on bulk-Si wafer. In: 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology. IEEE. pp. 108–110 (2010)

  20. Sallese, J.-M., Chevillon, N., Lallement, C., Iniguez, B., Prégaldiny, F.: Charge-based modeling of junctionless double-gate field-effect transistors. IEEE Trans. Electron Devices 58(8), 2628–2637 (2011)

    Article  Google Scholar 

  21. Jazaeri, F., Sallese, J.-M.: Modeling Nanowire and Double-Gate Junctionless Field-Effect Transistors. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  22. Rassekh, A., Jazaeri, F., Fathipour, M., Sallese, J.-M.: Modeling interface charge traps in junctionless FETs, including temperature effects. IEEE Trans. Electron Devices 66(11), 4653–4659 (2019)

    Article  Google Scholar 

  23. Wilson, L.: International Technology Roadmap for Semiconductors (ITRS). In: Semiconductor Industry Association; (2013)

  24. ATLAS Device Simulation Software (Silvaco CU Santa Clara. Silvaco;. Available from: https://www.silvaco.com/

  25. Ortiz-Conde, A., Sánchez, F.G., Liou, J.J., Cerdeira, A., Estrada, M., Yue, Y.: A review of recent MOSFET threshold voltage extraction methods. Microelectron. Reliab. 42(4–5), 583–596 (2002)

    Article  Google Scholar 

  26. Predictive technology model [Online];. Available from: http://ptm.asu.edu/

  27. Zhang, X., Connelly, D., Takeuchi, H., Hytha, M., Mears, R.J., Liu, T.J.K.: Comparison of SOI versus bulk FinFET technologies for 6T-SRAM voltage scaling at the 7-/8-nm node. IEEE Trans. Electron Devices 64(1), 329–332 (2016)

    Article  Google Scholar 

  28. Ohtou, T., Sugii, N., Hiramoto, T.: Impact of parameter variations and random dopant fluctuations on short-channel fully depleted SOI MOSFETs with extremely thin BOX. IEEE Electron Device Lett. 28(8), 740–742 (2007)

    Article  Google Scholar 

  29. Nawaz, S.M., Dutta, S., Chattopadhyay, A., Mallik, A.: Comparison of random dopant and gate-metal workfunction variability between junctionless and conventional FinFETs. IEEE Electron Device Lett. 35(6), 663–665 (2014)

    Article  Google Scholar 

  30. Kleeberger, V.B., Graeb, H., Schlichtmann, U.: Predicting future product performance: modeling and evaluation of standard cells in FinFET technologies. In: Proceedings of the 50th Annual Design Automation Conference. ACM. p. 33, (2013)

  31. Dadgour, H., De, V., Banerjee, K.: Statistical modeling of metal-gate work-function variability in emerging device technologies and implications for circuit design. In: 2008 IEEE/ACM International Conference on Computer-Aided Design. IEEE. pp. 270–277, (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Fathipour.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rassekh, A., Fathipour, M. A single-gate SOI nanosheet junctionless transistor at 10-nm gate length: design guidelines and comparison with the conventional SOI FinFET. J Comput Electron 19, 631–639 (2020). https://doi.org/10.1007/s10825-020-01475-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01475-9

Keywords

Navigation