Skip to main content
Log in

A physics-based model for LER-induced threshold voltage variations in double-gate MOSFET

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The line-edge roughness (LER) has become one of the dominant sources of process variations in multi-gate transistors. The estimation of threshold voltage distribution due to LER through atomistic simulations is computationally intensive, even though these simulations provide accurate results. In this paper, a physics-based model for channel LER-induced threshold voltage fluctuations due to variations of the silicon-body thickness in a double-gate (DG) MOSFET is presented. The developed \(V_\mathrm{TH}\) model gives more insights into the dependence of device and LER parameters on the \(V_\mathrm{TH}\) variations with a reduced computational time. The computed \(V_\mathrm{TH}\) variations due to different LER patterns are validated with TCAD simulations. The threshold voltage standard deviation due to LER in 500 device samples for different device dimensions, doping concentration and biases is studied. The developed model can be easily integrated in any circuit simulator to predict the threshold voltage variations of the devices due to LER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Collinge, J.P.: FinFETs and Other Multi-gate Transistors. Springer, Boston (2008)

    Book  Google Scholar 

  2. Asenov, A.: Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 \(\mu m\) MOSFETs: A 3-D ’atomistic’ simulation study. IEEE Trans. Electron Devices 45(12), 2505–2513 (1998)

    Article  Google Scholar 

  3. Bindu, B., Cheng, B., Roy, G., Wang, X., Roy, S., Asenov, A.: Parameter set and data sampling strategy for accurate yet efficient statistical MOSFET compact model extraction. Solid-State Electron. 54(3), 307–315 (2010)

    Article  Google Scholar 

  4. Sriram, S.R., Bindu, B.: Analytical Model for RDF-Induced Threshold Voltage Fluctuations in Double-Gate MOSFET. IEEE Trans. Device Mater. Reliab. 19(2), 370–377 (2019). https://doi.org/10.1109/TDMR.2019.2910197

    Article  Google Scholar 

  5. Asenov, A., Kaya, S., Brown, A.R.: Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness. IEEE Trans. Electron Devices 50(5), 1254–1260 (2003)

    Article  Google Scholar 

  6. Patel, K., Liu, T.J.K., Spanos, C.J.: Gate line edge roughness model for estimation of FinFET performance variability. IEEE Trans. Electron Devices 56(12), 3055–3063 (2009)

    Article  Google Scholar 

  7. Ye, Y., Gummalla, S., Wang, C.C., Chakrabarti, C., Cao, Y.: Random variability modeling and its impact on scaled CMOS circuits. J. Comput. Electron. 9(3–4), 108–113 (2010)

    Article  Google Scholar 

  8. Brown, A.R., Roy, G., Asenov, A.: Poly-si-gate-related variability in decananometer MOSFETs with conventional architecture. IEEE Trans. Electron Devices 54(11), 3056–3063 (2007)

    Article  Google Scholar 

  9. Chiang, M.H., Lin, J.N., Kim, K., Chuang, C.T.: Random dopant fluctuation in limited-width FinFET technologies. IEEE Trans. Electron Devices 54(8), 2055–2060 (2007)

    Article  Google Scholar 

  10. Shin, Y.H., Yun, I.: Analytical model for random dopant fluctuation in double-gate MOSFET in the subthreshold region using macroscopic modeling method. Solid-State Electron. 126, 136–142 (2016)

    Article  Google Scholar 

  11. Diaz, C.H., Tao, H.J., Ku, Y.C., Yen, A., Young, K.: An experimentally validated analytical model for gate line-edge roughness (LER) effects on technology scaling. IEEE Electron Device Lett. 22(6), 287–289 (2001)

    Article  Google Scholar 

  12. Wang, X., Cheng, B., Brown, A.R., Millar, C., Kuang, J.B., Nassif, S., Asenov, A.: Interplay between process-induced and statistical variability in 14-nm CMOS technology double-gate SOI FinFETs. IEEE Trans. Electron Devices 60(8), 2485–2492 (2013)

    Article  Google Scholar 

  13. Yang, Y., Yu, S., Zeng, L., Du, G., Kang, J., Zhao, Y., Han, R., Liu, X.: Variability induced by line edge roughness in double-gate dopant-segregated Schottky MOSFETs. IEEE Trans. Nanotechnol. 10(2), 244–249 (2011)

    Article  Google Scholar 

  14. Yu, S., Zhao, Y., Zeng, L., Du, G., Kang, J., Han, R., Liu, X.: Impact of line-edge roughness on double-gate schottky-barrier field-effect transistors. IEEE Trans. Electron Devices 56(6), 1211–1219 (2009)

    Article  Google Scholar 

  15. Leung, G., Chui, C.O.: Stochastic variability in silicon double-gate lateral tunnel field-effect transistors. IEEE Trans. Electron Devices 60(1), 84–91 (2013)

    Article  Google Scholar 

  16. Arora, N.D.: MOSFET Models for VLSI Circuit Simulation: Theory and Practice. Springer, New York (2012)

    Google Scholar 

  17. Chinta, S.N., Mittal, S., Debashis, P., Ganguly, U.: A FinFET LER \(V_{T}\) variability estimation scheme with 300\(\times\) efficiency improvement. In: 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 277–280. IEEE (2014)

  18. Jiang, X., Wang, X., Wang, R., Cheng, B., Asenov, A., Huang, R.: Predictive compact modeling of random variations in FinFET technology for 16/14nm node and beyond. In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 28–3. IEEE (2015)

  19. Mittal, S., Shekhawat, A., Ganguly, U.: An analytical model to estimate FinFET’s \(V_{T}\) distribution due to fin-edge roughness. IEEE Trans. Electron Devices 63(3), 1352–1358 (2016)

    Article  Google Scholar 

  20. Mittal, S., Shekhawat, A., Ganguly, S., Ganguly, U., et al.: Analytical Model to estimate FinFET’s \(I_{ON}\), \(I_{OFF}\), \(SS\), and \(V_{T}\) distribution due to FER. IEEE Trans. Electron Devices 64(8), 3489–3493 (2017)

    Article  Google Scholar 

  21. Hanson, S., Seok, M., Sylvester, D., Blaauw, D.: Nanometer device scaling in subthreshold logic and SRAM. IEEE Trans. Electron Devices 55(1), 175–185 (2007)

    Article  Google Scholar 

  22. Baravelli, E., Jurczak, M., Speciale, N., De Meyer, K., Dixit, A.: Impact of LER and random dopant fluctuations on FinFET matching performance. IEEE Trans. Nanotechnol. 7(3), 291–298 (2008)

    Article  Google Scholar 

  23. Katti, G., DasGupta, N., DasGupta, A.: Threshold voltage model for mesa-isolated small geometry fully depleted SOI MOSFETs based on analytical solution of 3-D Poisson’s equation. IEEE Trans. Electron Devices 51(7), 1169–1177 (2004)

    Article  Google Scholar 

  24. Chen, Q., Harrell, E.M., Meindl, J.D.: A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs. IEEE Trans. Electron Devices 50(7), 1631–1637 (2003)

    Article  Google Scholar 

  25. Wu, Y.S., Su, P.: Sensitivity of multigate MOSFETs to process variations—an assessment based on analytical solutions of 3-D Poisson’s equation. IEEE Trans. Nanotechnol. 7(3), 299–304 (2008)

    Article  Google Scholar 

  26. Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Pananakakis, G., Ghibaudo, G.: Threshold voltage model for short-channel undoped symmetrical double-gate MOSFETs. IEEE Trans. Electron Devices 55(9), 2512–2516 (2008)

    Article  Google Scholar 

  27. Huang, X., Lee, W.C., Kuo, C., Hisamoto, D., Chang, L., Kedzierski, J., Anderson, E., Takeuchi, H., Choi, Y.K., Asano, K., et al.: Sub-50 nm P-channel FinFET. IEEE Trans. Electron Devices 48(5), 880–886 (2001)

    Article  Google Scholar 

  28. Doyle, B., Datta, S., Doczy, M., Hareland, S., Jin, B., Kavalieros, J., Linton, T., Murthy, A., Rios, R., Chau, R.: High performance fully-depleted tri-gate CMOS transistors. IEEE Electron Device Lett. 24(4), 263–265 (2003)

    Article  Google Scholar 

  29. Kranti, A., Armstrong, G.A.: Performance assessment of nanoscale double-and triple-gate FinFETs. Semicond. Sci. Technol. 21(4), 409 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bindu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript received in September 2019. This work was supported by the Department of Science and Technology, Government of India, under Grant SERB/F/4194/2017-2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriram, S.R., Bindu, B. A physics-based model for LER-induced threshold voltage variations in double-gate MOSFET. J Comput Electron 19, 622–630 (2020). https://doi.org/10.1007/s10825-020-01474-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01474-w

Keywords

Navigation