Skip to main content
Log in

Tight-binding description of graphene–BCN–graphene layered semiconductors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Based on density functional calculations, tight-binding models are proposed for few layers of three BCN allotropes sandwiched between two layers of graphene. The results pave the road toward investigation of the performance of novel nanoelectronic devices such as vertical tunneling field effect transistors and nanoscale sensors operating on the basis of quantum tunneling through these layered materials-based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Areshkin, D.A., White, C.T.: Building blocks for integrated graphene circuits. Nano Lett. 7(11), 3253–3259 (2007)

    Article  Google Scholar 

  2. Lee, S., Lee, K., Liu, C.H., Kulkarni, G.S., Zhong, Z.: Flexible and transparent all-graphene circuits for quaternary digital modulations. Nat. Commun. 3, 1018 (2012)

    Article  Google Scholar 

  3. Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487 (2010)

    Article  Google Scholar 

  4. Yang, L., Park, C.H., Son, Y.W., Cohen, M.L., Louie, S.G.: Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99(18), 186801 (2007)

    Article  Google Scholar 

  5. Ni, Z.H., Yu, T., Lu, Y.H., Wang, Y.Y., Feng, Y.P., Shen, Z.X.: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2(11), 2301–2305 (2008)

    Article  Google Scholar 

  6. Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., Dos Santos, J.L., Nilsson, J., Guinea, F., Geim, A.K., Neto, A.C.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99(21), 216802 (2007)

    Article  Google Scholar 

  7. Shinde, P.P., Kumar, V.: Direct band gap opening in graphene by BN doping: Ab initio calculations. Phys. Rev. B 84(12), 125401 (2011)

    Article  Google Scholar 

  8. Jung, J., Qiao, Z., Niu, Q., MacDonald, A.H.: Transport properties of graphene nanoroads in boron nitride sheets. Nano Lett. 12(6), 2936–2940 (2012)

    Article  Google Scholar 

  9. Fiori, G., Betti, A., Bruzzone, S., Iannaccone, G.: Lateral graphene–hBCN heterostructures as a platform for fully two-dimensional transistors. ACS Nano 6(3), 2642–2648 (2012)

    Article  Google Scholar 

  10. Saptarshi, D., Prakash, A., Salazar, R., Appenzeller, J.: Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. ACS Nano 8(2), 1681–1689 (2014)

    Article  Google Scholar 

  11. Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., et al.: Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071), 947–950 (2012)

    Article  Google Scholar 

  12. Dean, C.R., Andrea, F.Y., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722 (2010)

    Article  Google Scholar 

  13. Giannazzo, F., Greco, G., Roccaforte, F., Sonde, S.: Vertical transistors based on 2D materials: status and prospects. Crystals 8(2), 70 (2018)

    Article  Google Scholar 

  14. Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z.F., Storr, K., Balicas, K., Ajayan, P.M., Liu, F.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010)

    Article  Google Scholar 

  15. Beniwal, S., Hooper, J., Miller, D.P., Costa, P.S., Chen, G., Liu, S.Y., Dowben, P.A., Sykes, E.C., Zurek, E., Enders, A.: Graphene-like boron–carbon–nitrogen monolayers. ACS Nano 11(3), 2486–2493 (2017)

    Article  Google Scholar 

  16. Zhang, J., Zhang, Y., Huang, S., Lin, W., Chen, W.K.: BC2N/graphene heterostructure as a promising anode material for rechargeable Li-ion batteries by density functional calculations. J. Phys. Chem. C 123, 30809–30818 (2019)

    Article  Google Scholar 

  17. Shao, Y., Wang, Q., Hu, L., Pan, H., Shi, X.: BC2N monolayers as promising anchoring materials for lithium–sulfur batteries: first-principles insights. Carbon 1(149), 530–537 (2019)

    Article  Google Scholar 

  18. Ghobadi, N., Pourfath, M.: Vertical tunneling graphene heterostructure-based transistor for pressure sensing. IEEE Electron Device Lett. 36(3), 280–282 (2015)

    Article  Google Scholar 

  19. Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014)

    Article  Google Scholar 

  20. Le Lay, G.: 2D materials: silicene transistors. Nat. Nanotechnol. 10(3), 202 (2015)

    Article  Google Scholar 

  21. Hancock, Y., Uppstu, A., Saloriutta, K., Harju, A., Puska, M.J.: Generalized tight-binding transport model for graphene nanoribbon-based systems. Phys. Rev. B 81(24), 245402 (2010)

    Article  Google Scholar 

  22. Sławińska, J., Zasada, I., Klusek, Z.: Energy gap tuning in graphene on hexagonal boron nitride bilayer system. Phys. Rev. B 81(15), 155433 (2010)

    Article  Google Scholar 

  23. Jung, J., MacDonald, A.H.: Tight-binding model for graphene π-bands from maximally localized Wannier functions. Phys. Rev. B 87(19), 195450 (2013)

    Article  Google Scholar 

  24. Sanaeepur, M., Goharrizi, A.Y., Sharifi, M.J.: Performance analysis of graphene nanoribbon field effect transistors in the presence of surface roughness. IEEE Trans. Electron Devices 61(4), 1193–1198 (2013)

    Article  Google Scholar 

  25. Sanaeepur, M., Goharrizi, A.Y., Sharifi, M.J.: Numerical investigation of the effect of substrate surface roughness on the performance of zigzag graphene nanoribbon field effect transistors symmetrically doped with BN. Beilstein J. Nanotechnol. 5(1), 1569–1574 (2014)

    Article  Google Scholar 

  26. Sanaeepur, M.: Crosstalk delay and stability analysis of MLGNR interconnects on rough surface dielectrics. IEEE Trans. Nanotechnol. 18, 1181–1187 (2019)

    Article  Google Scholar 

  27. Goharrizi, A.Y., Sanaeepur, M., Sharifi, M.J.: Improving performance of armchair graphene nanoribbon field effect transistors via boron nitride doping. Superlattice Microstruct. 85, 522–5290 (2015)

    Article  Google Scholar 

  28. Horri, A., Faez, R., Pourfath, M., Darvish, G.: Modeling of a vertical tunneling transistor based on graphene–MoS2 heterostructure. IEEE Trans. Electron Devices 64(8), 3459–3465 (2017)

    Article  Google Scholar 

  29. Sanaeepour, M., Abedi, A., Sharifi, M.J.: Performance analysis of nanoscale single layer graphene pressure sensors. IEEE Trans. Electron Devices 64(3), 1300–1304 (2017)

    Article  Google Scholar 

  30. Horri, A., Faez, R., Pourfath, M., Darvish, G.: A computational study of vertical tunneling transistors based on graphene-WS2 heterostructure. J. Appl. Phys. 121(21), 214503 (2017)

    Article  Google Scholar 

  31. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009)

    Google Scholar 

  32. Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048 (1981)

    Article  Google Scholar 

  33. Kohn, W.: Electronic structure of matter–wave functions and density functionals. Rev. Mod. Phys. 71(5), 1253–1266 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Sanaeepur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, M., Horri, A., Sanaeepur, M. et al. Tight-binding description of graphene–BCN–graphene layered semiconductors. J Comput Electron 19, 62–69 (2020). https://doi.org/10.1007/s10825-019-01442-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01442-z

Keywords

Navigation