Skip to main content
Log in

Enhancement of the DC performance of a PNPN hetero-dielectric BOX tunnel field-effect transistor for low-power applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A comparative analysis is performed on a PNPN hetero-dielectric buried oxide (BOX) tunnel field-effect transistor (FET) with the conventional versus various modified structures, including the effects of using a high-k dielectric (HfO2) below the gate electrode and/or a low-bandgap material (InAs) as a source pocket. The use of InAs as a low-bandgap material greatly improves the tunneling of charge carriers from the source to channel region in the tunnel FET. Meanwhile, technology computer-aided design (TCAD) simulations reveal that inclusion of the high-k gate oxide with InAs as the source pocket in the PNPN structure results in a huge improvement in the electrostatic characteristics of the proposed structure in terms of both the ON-state current and subthreshold swing (SS). The proposed structure achieves a SS of 4.64 mV/dec and an ON-state current density of \(1.5\times 10^{-3}\) A/\(\mu \)m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Woerlee, P.H., Knitel, M.J., van Langevelde, R., Klaassen, D.B.M., Tiemeijer, L.F., Scholten, A.J., Zegers-van Duijnhoven, A.T.A.: RFCMOS performance trends. IEEE Trans. Electron Devices 48(8), 1776–1782 (2001)

    Article  Google Scholar 

  2. Ghani, T., Mistry, K., Packan, P., Thompson, S., Stettler, M., Tyagi, S., Bohr, M.: Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors. In: Symposium on VLSI Technology, pp. 174–175 (2000)

  3. Sahu, P.K., Mohapatra, S.K., Pradhan, K.P.: Impact of downscaling on analog/RF performance of sub-100nm GS-DG MOSFET. J. Microelectron. Electron. Compon. Mater. 44(2), 119–125 (2014)

    Google Scholar 

  4. Meindl, J.D.: Low power microelectronics: retrospect and prospect. Proc. IEEE 83(4), 619–635 (1995)

    Article  Google Scholar 

  5. Kumar, M., Hussain, M.A., Paul, S.K.: Performance of a two input nand gate using subthreshold leakage control techniques. J. Electron Devices 14, 1161–1169 (2012)

    Google Scholar 

  6. Seabaugh, A.C., Zhang, Q.: Low voltage tunnel transistor beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)

    Article  Google Scholar 

  7. Kumar, M., Hussain, M.A., Singh, L.K.: Design of a low power high speed ALU in 45 nm using GDI technique and its performance comparison. Commun. Comput. Inf. Sci. 142, 458–463 (2011)

    Google Scholar 

  8. Taghilou, H., Fathi, D.: Spin related transport in two pyrene and triphenylene graphene nanodisks using NEGF method. Phys. E Low Dimens. Syst. Nanostruct. 101, 208–211 (2018)

    Article  Google Scholar 

  9. Rostami, A., Fathi, D.: Real space simulation of graphene nanoribbon field-effect transistor with double-lightly doped source and drain regions. In: Iranian Conference on Electrical Engineering (ICEE), pp. 253–258 (2017)

  10. Aziziyan, M.R., Moghadam, N., Fathi, D., Ahmadi, V.: Analysis of strained double-lightly doped MOSCNT using NEGF. Appl. Phys. A 109(2), 481–488 (2012)

    Article  Google Scholar 

  11. Moghadam, N., Aziziyan, M.R., Fathi, D.: Design and simulation of double-lightly doped MOSCNT using non-equilibrium Green’s function. Appl. Phys. A 108(3), 551–557 (2012)

    Article  Google Scholar 

  12. Abaslou, S., Fathi, D.: A nano-transistor using a mesoscopic ring: the elastic and inelastic interactions analysis. Phys. E Low Dimens. Syst. Nanostruct. 44, 1309–1314 (2012)

    Article  Google Scholar 

  13. Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistor (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)

    Article  Google Scholar 

  14. Avci, U.E., Morris, D.H., Young, I.A.: Tunnel field-effect transistors: prospects and challenges. IEEE J. Electron Devices Soc. 3(3), 88–95 (2015)

    Article  Google Scholar 

  15. Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Trans. Electron Device Lett. 27(4), 297–300 (2006)

    Article  Google Scholar 

  16. Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunnelling field effect transistor with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)

    Article  Google Scholar 

  17. Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)

    Article  Google Scholar 

  18. Ghosh, B., Akram, M.W.: Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013)

    Article  Google Scholar 

  19. Zhu, Y., Hudait, M.K.: Low-power tunnel field effect transistors using mixed As and Sb based heterostructures. Nanotechnol. Rev. 2(6), 637–678 (2013)

    Article  Google Scholar 

  20. Damrongplasit, N., Shin, C., Kim, S.H., Vega, R.A., Liu, T.J.K.: Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans. Electron Devices 58(10), 3541–3548 (2011)

    Article  Google Scholar 

  21. Vijayvargiya, V., Vishvakarma, S.K.: Effect of drain doping profile on double-gate tunnel field-effect transistor and its influence on device RF performance. IEEE Trans. Nanotechnol. 13(5), 974–981 (2014)

    Article  Google Scholar 

  22. Jhaveri, R., Nagavarapu, V., Woo, J.C.S.: Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron Devices 58(1), 80–86 (2011)

    Article  Google Scholar 

  23. Ganapathi, K., Yoon, Y., Salahuddin, S.: Analysis of InAs vertical and lateral band-to-band tunneling transistors: leveraging vertical tunneling for improved performance. Appl. Phys. Lett. 97(3), 033504-1–033504-3 (2010)

    Article  Google Scholar 

  24. Shubham, Sahay, Kumar, M.J.: Controlling the drain side tunneling width to reduce ambipolar current in tunnel FETs using heterodielectric BOX. IEEE Trans. Electron Devices 62(11), 3882–3886 (2015)

    Article  Google Scholar 

  25. Anand, Sunny, Sarin, R.K.: Performance investigation of InAs based dual electrode tunnel FET on the analog/RF platform. Superlattices Microstruct. 97, 60–69 (2016)

    Article  Google Scholar 

  26. Ford, A.C., Yeung, C.W., Chuang, Steven, Kim, Ha Sul, Plis, Elena, Krishna, Sanjay, Hu, Chenming, Javey, Ali: Ultrathin body InAs tunneling field-effect transistors on Si substrates. Appl. Phys. Lett. 98(11), 113105-1–113105-3 (2011)

    Article  Google Scholar 

  27. Riel, H., Moselund, K. E., Bessire, C., Bjork, M. T., Schenk, A., Ghoneim, H., Schmid, H.: InAs-Si heterojunction nanowire tunnel diodes and tunnel FETs. In: International Electron Devices Meeting, pp. 16.6.1–16.6.4. San Francisco (2012)

  28. Tomioka, K., Yoshimura, M., Fukui, T.: Steep-slope tunnel field-effect transistors using III–V nanowire/Si heterojunction. In: Proceedings of VLSI Technology (VLSIT) symposium, pp. 47–48. Honolulu (2012)

  29. Ahish, S., Sharma, D., Vasantha, M.H., Kumar, Y.B.N.: Device and circuit level performance analysis of novel InAs/Si heterojunction double gate tunnel field effect transistor. Superlattices Microstruct. 94, 119–130 (2016)

    Article  Google Scholar 

  30. Turkane, S.M., Kharate, G.K., Kureshi, A.K.: Ge/Si hetero-junction hetero-gate PNPN TFET with hetero-dielectric BOX to improve \(I_{\rm ON}\)/\(I_{\rm OFF}\). Indian J. Sci. Technol. 10(14), 1–7 (2017)

    Article  Google Scholar 

  31. Silvaco Int.: ATLAS Device Simulation Software. Santa Clara (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Aslam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M., Korram, G., Sharma, D. et al. Enhancement of the DC performance of a PNPN hetero-dielectric BOX tunnel field-effect transistor for low-power applications. J Comput Electron 19, 271–276 (2020). https://doi.org/10.1007/s10825-019-01427-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01427-y

Keywords

Navigation