Calculations of the structural and optoelectronic properties of cubic CdxZn1−xSeyTe1−y semiconductor quaternary alloys using the DFT-based FP-LAPW approach


The structural and optoelectronic properties of technologically important CdxZn1−xSeyTe1−y quaternary alloys have been calculated using the density functional theory (DFT)-based full potential (FP)-linearized augmented plane wave (LAPW) approach. The exchange–correlation potentials are calculated using the Perdew–Burke–Ernzerhof (PBE)-generalized gradient approximation (GGA) scheme for the structural properties and both the modified Becke–Johnson (mBJ) and Engel–Vosko (EV)-GGA schemes for the optoelectronic properties. A direct bandgap (\( \varGamma \)\( \varGamma \)) is observed for all the examined compositions in the CdxZn1−xSeyTe1−y quaternary system. At each cationic (Cd) concentration x, the lattice constant decreases while the bulk modulus and bandgap increase nonlinearly with increasing anionic (Se) concentration y. On the other hand, a nonlinear increase in the lattice constant but a decrease in the bulk modulus and bandgap are observed with increasing cationic concentration x at each anionic concentration y. The contour maps calculated for the lattice constant and energy bandgap will be useful for designing new quaternary alloys with desired optoelectronic properties. Several interesting features are observed based on the study of the optical properties of the alloys. The compositional dependence of each calculated zero-frequency limit shows the opposite trend, while each calculated critical point shows a similar trend, with respect to that found for the compositional dependence of the bandgap. Finally, the results of these calculations suggest that ZnTe, InAs, GaSb, and InP are suitable substrates for the growth of several zincblende CdxZn1−xSeyTe1−y quaternary alloys.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Nelmes, R.J., McMohan, M.I.: Structural transitions in the group IV, III-V, and II-VI semiconductors under pressure. Semicond. Semimetals 54, 145–246 (1998)

    Article  Google Scholar 

  2. 2.

    Eckelt, P.: Energy band structures of cubic ZnS, ZnSe, ZnTe, and CdTe (Korringa-Kohn-Rostoker method). Phys. Stat. Sol. 23, 307–312 (1967)

    Article  Google Scholar 

  3. 3.

    Wang, J., Isshiki, M.: Wide-Band-gap II–VI Semiconductors: Growth and properties. In: Kaspa, S., Capper, P. (eds.) Springer Handbook of Electronic and Photonic Materials, pp. 325–342. Springer, Berlin (2006)

    Google Scholar 

  4. 4.

    Adachi, S.: Properties of Group-IV, III–V and II–VI Semiconductors. Wiley, London (2005)

    Google Scholar 

  5. 5.

    Van de Walle, C.G.: Wide-Band-Gap Semiconductors. North Holland, Amsterdam (1993)

    Google Scholar 

  6. 6.

    Huynh, W.U., Dittmer, J.J., Alivisato, A.P.: Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002)

    Article  Google Scholar 

  7. 7.

    Salavei, A., Rimmaudo, I., Piccinelli, F., Romeo, A.: Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells. Thin Solid Films 535, 257–260 (2013)

    Article  Google Scholar 

  8. 8.

    Crossay, A., Buecheler, S., Kranz, L., Perrenoud, J., Fella, C.M., Romanyuk, Y.E., Tiwari, A.N.: Spray-deposited Al-doped ZnO transparent contacts for CdTe solar cells. Solar Energy Mater. Sol. Cells 101, 283–288 (2012)

    Article  Google Scholar 

  9. 9.

    Nakayama, N., Matsumoto, H., Yamaguchi, K., Ikegami, S., Hioki, Y.: Ceramic thin film CdTe solar cell. Jpn. J. Appl. Phys. 15, 2281–2282 (1976)

    Article  Google Scholar 

  10. 10.

    Shieh, F., Saunders, A.E., Korgel, B.A.: General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J. Phys. Chem. B 109, 8538–8542 (2005)

    Article  Google Scholar 

  11. 11.

    Peng, Z.A., Peng, X.G.: Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2001)

    Article  Google Scholar 

  12. 12.

    Colvin, V.L., Schlamp, M.C., Alivisatos, A.P.: Light emitting diodes made from cadmium selenide nanocrystals and a conducting polymer. Nature 370, 354–357 (1994)

    Article  Google Scholar 

  13. 13.

    Greenham, N.C., Peng, X., Alivisatos, A.P.: Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity. Synth. Met. 84, 545–546 (1997)

    Article  Google Scholar 

  14. 14.

    Xi, L.F., Chua, K.H., Zhao, Y.Y., Zhang, J., Xiong, Q.H., Lam, Y.M.: Controlled synthesis of CdE (E = S, Se and Te) nanowires. RSC Adv. 2, 5243–5253 (2012)

    Article  Google Scholar 

  15. 15.

    Chen, X., Liu, R., Qiao, S., Mao, J., Du, X.: Synthesis of cadmium chalcogenides nanowires via laser-activated gold catalysts in solution. Mater. Chem. Phys. 212, 408–414 (2018)

    Article  Google Scholar 

  16. 16.

    Dabbousi, B.O., Bawendi, M.G., Rubner, O.O.: Electroluminescence from CdSe quantumdot/polymer composites. Appl. Phys. Lett. 66, 1316–1318 (1995)

    Article  Google Scholar 

  17. 17.

    Thuy, U.T.D., Toan, P.S., Chi, T.T.K., Khang, D.D., Liem, N.Q.: CdTe quantum dots for an application in the life sciences. Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045009–045014 (2010)

    Article  Google Scholar 

  18. 18.

    Liyanage, W.P.R., Wilson, J.S., Kinzel, E.C., Dorant, B.K.: Fabrication of CdTe nanorod arrays over large area through patterned electrodeposition for efficient solar energy conversion. Sol. Energy Mater. Sol. Cells 133, 260–267 (2015)

    Article  Google Scholar 

  19. 19.

    Hasse, M.A., Qui, J., De Puydt, J.M., Cheng, H. Blue-green laser diodes. Appl. Phys. Lett. 59, 1272–1274 (1991)

    Article  Google Scholar 

  20. 20.

    Wagner, H.P., Wittmann, S., Schmitzer, H., Stanzl, H.: Phase matched second harmonic generation using thin film ZnTe optical waveguides. J. Appl. Phys. 77, 3637–3640 (1995)

    Article  Google Scholar 

  21. 21.

    Tamargo, M.C., Brasil, M.J.S.P., Nahory, R.E., Martin, R.J., Weaver, A.L., Gilchrist, H.L.: MBE growth of the (Zn, Cd)(Se, Te) system for wide-bandgap heterostructure lasers. Semicond. Sci. Technol. 6, A8–A13 (1991)

    Article  Google Scholar 

  22. 22.

    Medelung, O.: Landolt Bornstein: Numerical Data and Functional Relationship in Science and Technology, vol. 17b. Springer, Berlin (1982)

    Google Scholar 

  23. 23.

    Abrikosov, N.K., Bankina, V.B., Poretskaya, L.V., Shelimova, L.E., Skudnova, E.V.: Semiconducting II-VI IV-VI and V-VI Compounds. Plenum, New York (1969)

    Google Scholar 

  24. 24.

    Strehlow, W.H., Cook, E.L.: Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J. Phys. Chem. Ref. Data 2, 163–199 (1973)

    Article  Google Scholar 

  25. 25.

    Harrison, W.A.: Electronic Structure and the Properties of Solids. Freeman, San-Francisco (1980)

    Google Scholar 

  26. 26.

    Manabe, A., Mitsuishi, A., Yoshinaga, H.: Infrared lattice reflection spectra of II-VI compounds. Jpn. J. Appl. Phys. 6, 593–600 (1967)

    Article  Google Scholar 

  27. 27.

    Marple, D.T.F.: Refractive index of ZnSe, ZnTe, and CdTe. J. Appl. Phys. 35, 539–542 (1964)

    Article  Google Scholar 

  28. 28.

    Lee, B.H.: Pressure dependence of the second-order elastic constants of ZnTe and ZnSe. J. Appl. Phys. 41, 2988–2990 (1970)

    Article  Google Scholar 

  29. 29.

    Berlincourt, D., Jaffe, H., Shiozawa, L.R.: Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium. Phys. Rev. 29, 1009–1017 (1963)

    Article  Google Scholar 

  30. 30.

    Kim, Y.D., Klein, M.V., Ren, S.F., Chen, Y.C., Lou, H., Samarth, N., Furdyna, J.K.: Optical properties of zinc-blende CdSe and Zn„Cd& Se films grown on GaAs. Phys. Rev. B 49, 7262–7270 (1994)

    Article  Google Scholar 

  31. 31.

    Garcia, V.M., Nair, M.T.S., Nair, P.K., Zingaro, R.A.: Preparation of highly photosensitive CdSe thin films by a chemical bath deposition technique. Semicond. Sci. Technol. 11, 427–432 (1996)

    Article  Google Scholar 

  32. 32.

    Toma, O., Ion, L., Girtan, M., Antohe, S.: Optical, morphological and electrical studies of thermally vacuum evaporated CdTe thin films for photovoltaic applications. Sol. Energy 108, 51–60 (2014)

    Article  Google Scholar 

  33. 33.

    Okamoto, T., Hayashi, R., Ogawa, Y., Hosono, A., Doi, M.: Fabrication of polycrystalline CdTe thin-film solar cells using carbon electrodes with carbon nanotubes. Jpn. J. Appl. Phys. 54, 04DR01–04DR04 (2015)

    Article  Google Scholar 

  34. 34.

    Kim, Y.D., Cooper, S.L., Klein, M.V.: Optical characterization of pure ZnSe films grown on GaAs. Appl. Phys. Lett. 62, 2387–2389 (1993)

    Article  Google Scholar 

  35. 35.

    Hsu, C.H., Yan, C.Y., Kao, W.H., Yu, Y.T., Tung, H.H.: Properties of ZnTe thin films on silicon substrate. Ferroelectrics 491, 118–126 (2016)

    Article  Google Scholar 

  36. 36.

    Camacho, J., Cantarero, A., Hernández-Calderon, I., Gonzalez, L.: Raman spectroscopy and photoluminescence of ZnTe thin films grown on GaAs. J. Appl. Phys. 92, 6014–6018 (2002)

    Article  Google Scholar 

  37. 37.

    Watanabe, K., Litz, M.T., Korn, M., Ossau, W., Waag, A., Landwehr, G., Schussler, U.: Optical properties of ZnTe/Zn1−xMgxSeyTe1−y quantum wells and epilayers grown by molecular beam epitaxy. J. Appl. Phys. 81, 451–455 (1997)

    Article  Google Scholar 

  38. 38.

    Muthukumarasamy, N., Velumani, S., Balasundaraprabhu, R., Jayakumar, S., Kannan, M.D.: Fabrication and characterization of n-CdSe0.7Te0.3/p-CdSe0.15Te0.85 solar cell. Vacuum 84, 1216–1219 (2010)

    Article  Google Scholar 

  39. 39.

    MacDonald, B.I., Martucci, A., Rubanov, S., Watkins, S.E., Mulvaney, P., Jasieniak, J.J.: Layer-by-layer assembly of sintered CdSexTe1–x nanocrystal solar cells. ACS Nano 6, 5995–6004 (2012)

    Article  Google Scholar 

  40. 40.

    Wen, S., Li, M., Yang, J., Mei, X., Wu, B., Liu, X., Heng, J., Qin, D., Hou, L., Xu, W., Wang, D.: Rationally controlled synthesis of CdSexTe1−x alloy nanocrystals and their application in efficient graded bandgap solar cells. Nanomaterials 7, 380–392 (2017)

    Article  Google Scholar 

  41. 41.

    Wen, S., Li, M., Yang, J., Mei, X., Wu, B., Liu, X., Heng, J., Qin, D., Hou, L., Xu, W., Wang, D.: Rationally controlled synthesis of CdSexTe1–x alloy nanocrystals and their application in efficient graded bandgap solar cells. Nanomaterials (2017).

    Article  Google Scholar 

  42. 42.

    Asano, H., Arai, K., Kita, M., Omata, T.: Synthesis of colloidal Zn(Te, Se) alloy quantum dots. Mater. Res. Exp. 4, 106501–106510 (2017)

    Article  Google Scholar 

  43. 43.

    Xu, F., Xue, B., Wang, F., Dong, A.: Ternary alloyed ZnSexTe1–x nanowires: solution-phase synthesis and band gap bowing. Chem. Mater. 27, 1140–1146 (2015)

    Article  Google Scholar 

  44. 44.

    Lu, J., Liu, H., Zhang, X., Sow, C.H.: One-dimensional nanostructures of II-VI ternary alloys: synthesis, optical properties, and applications. Nanoscale (2018).

    Article  Google Scholar 

  45. 45.

    Benkert, A., Schumacher, C., Brunner, K., Neder, R.B.: Monitoring of ZnCdSe layer properties by in situ x-ray diffraction during heteroepitaxy on (001) GaAs substrates. Appl. Phys. Lett. 90, 162105–162107 (2007)

    Article  Google Scholar 

  46. 46.

    Lin, W., Tamargo, M.C., Wei, H.Y., Sarney, W., Salamanca-Riba, L., Fitzpatrick, B.J.: Molecular-beam epitaxy growth and nitrogen doping of hexagonal ZnSe and ZnCdSe/ZnSe quantum well structures on hexagonal ZnMgSSe bulk substrates. J. Vac. Sci. Tech. B 18, 1711–1715 (2000)

    Article  Google Scholar 

  47. 47.

    Kawakami, Y., Yamaguchi, S., Wu, Y.H., Ichino, K., Fujita, S.Z., Fujita, S.G.: Optically pumped blue-green laser operation above room-temperature in Zn0.80Cd0.20Se-ZnS0.08Se0.92 multiple quantum well structures grown by metalorganic molecular beam epitaxy. Jpn. J. Appl. Phys. 30, L605–L607 (1991)

    Article  Google Scholar 

  48. 48.

    Yilmaz, E.: An investigation of CdZnTe thin films for photovoltaics. Energy Sources 34, 332–335 (2012)

    Article  Google Scholar 

  49. 49.

    Rajesh, G., Muthukumarasamy, N., Velauthapillai, D., Mohanta, K., Ragavendran, V., Batabyal, S.K.: Photoinduced electrical bistability of sputter deposited CdZnTe thin films. Mater. Res. Exp. 5, 026412–026419 (2018)

    Article  Google Scholar 

  50. 50.

    Znamenshchykov, Y.V., Kosyak, V.V., Opanasyuk, A.S., Kolesnyk, M.M., Fochuk, P.M., Cerskus, A.: Structural and optical properties of Cd1-xZnxTe thick films with high Zn concentrations. In: IEEE 7th International Conference on Nanomaterials: Applications and Properties (2017)

  51. 51.

    Wang, L., Chen, C., Jin, G., Feng, T., Du, X., Liu, F., Sun, H., Yang, B., Sun, H.: Manipulating depletion region of aqueous-processed nanocrystals solar cells with widened Fermi level offset. Nano Micro Small (2018).

    Article  Google Scholar 

  52. 52.

    Levy, M., Chowdhury, P.P., Eller, K.A., Chatterjee, A., Nagpal, P.: Tuning ternary Zn1−xCdxTe quantum dot composition: engineering electronic states for light-activated superoxide generation as a therapeutic against multidrug-resistant bacteria. ACS Biomater. Sci. Eng. 5, 3111–3118 (2019)

    Article  Google Scholar 

  53. 53.

    Chen, Y.P., Brill, G., Campo, E.M., Hierl, T., Hwang, J.C.M., Dhar, N.K.: Molecular beam epitaxial growth of Cd1−yZnySexTe1−x on Si(211). J. Electron. Mater. 33, 498–502 (2004)

    Article  Google Scholar 

  54. 54.

    Nomura, I., Ochiai, Y., Toyomura, N., Manoshiro, A., Kikuchi, A., Kishino, K.: Yellow–green lasing operations of ZnCdTe/MgZnSeTe laser diodes on ZnTe substrates. Phys. Stat. Sol. B 241, 483–486 (2004)

    Article  Google Scholar 

  55. 55.

    Brasil, M.J.S.P., Tamargo, M.C., Nahoty, R.E., Gilchrist, H.L., Martin, R.J.: Zn1 − yCdySe1 − xTex quaternary wide band-gap alloys: molecular beam epitaxial growth and optical properties. Appl. Phys. Lett. 59, 1206–1208 (1991)

    Article  Google Scholar 

  56. 56.

    Gaikwad, S.A., Tembhurkar, Y.D., Dudhe, C.M.: Study of optical, morphological and electrical properties of CdZnSeTe thin films prepared by spray pyrolysis method. Int. J. Pure Appl. Phys. 13, 339–347 (2017)

    Google Scholar 

  57. 57.

    Roy, U.N., Camarda, G.S., Cui, Y., Gul, R., Yang, G., Zazvorka, J., Dedic, V., Franc, J., James, R.B.: Evaluation of CdZnTeSe as a high quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Scientific Reports (2019).

  58. 58.

    Huang, M.Z., Ching, W.Y.: A minimal basis semi-ab initio approach to the band structures of semiconductors. J. Phys. Chem. Solids 46, 977–995 (1985)

    Article  Google Scholar 

  59. 59.

    Huang, M.Z., Ching, W.Y.: Calculation of optical excitations in cubic semiconductors. I. Electronic structure and linear response. Phys. Rev. B 47, 9449–9463 (1993)

    Article  Google Scholar 

  60. 60.

    Deligoz, E., Colakoglu, K., Ciftci, Y.: Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe. Physica B 373, 124–130 (2006)

    Article  Google Scholar 

  61. 61.

    Ouendadji, S., Ghemid, S., Meradji, H., El Haj Hassan, F.: Theoretical study of structural, electronic, and thermal properties of CdS, CdSe and CdTe compounds. Comput. Mater. Sci. 50, 1460–1466 (2011)

    Article  Google Scholar 

  62. 62.

    Sharma, S., Verma, A.S., Sarkar, B.K., Bhandari, R., Jindal, V.K.: First principles study on the elastic and electronic properties of CdX (Se and Te). AIP Conf. Proc. 1393, 229–230 (2011)

    Article  Google Scholar 

  63. 63.

    Wei, S.H., Zhang, S.B.: Structure stability and carrier localization in CdX (X = S, Se, Te) semiconductors. Phys. Rev. B 62, 6944–6947 (2000)

    Article  Google Scholar 

  64. 64.

    Guo, L., Zhang, S., Feng, W., Hu, G., Li, W.: A first-principles study on the structural, elastic, electronic, optical, lattice dynamical, and thermodynamic properties of zinc-blende CdX (X = S, Se, and Te). J. Alloys Compd. 579, 583–593 (2013)

    Article  Google Scholar 

  65. 65.

    Sarkar, S., Pal, S., Sarkar, P., Rosa, A.L., Frauenheim, Th: Self-consistent-charge density-functional tight-binding parameters for Cd–X (X = S, Se, Te) compounds and their interaction with H, O, C, and N. J. Chem. Theor. Comput. 7, 2262–2276 (2011)

    Article  Google Scholar 

  66. 66.

    Cote, M., Zakharov, O., Rubio, A., Cohen, M.L.: Ab initio calculations of the pressure-induced structural phase transitions for four II-VI compounds. Phys. Rev. B 55, 13025–13031 (1997)

    Article  Google Scholar 

  67. 67.

    Hosseini, S.M.: Optical properties of cadmium telluride in zinc-blende and wurzite structure. Phys. B 403, 1907–1915 (2008)

    Article  Google Scholar 

  68. 68.

    Corsa, A.D., Baroni, S., Resta, R., Gironcoli, S.: Ab initio calculation of phonon dispersions in II-VI semiconductors. Phys. Rev. B 47, 3588–3592 (1993)

    Article  Google Scholar 

  69. 69.

    Zakharov, O., Rubio, A., Blase, X., Cohen, M.L., Loui, S.G.: Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys. Rev. B 50, 10780–10787 (1994)

    Article  Google Scholar 

  70. 70.

    Chen, X.J., Mintz, A., Hu, J.S., Hua, X.L., Zinck, J., Goddard-III, W.A.: First principles studies of band offsets at heterojunctions and of surface reconstruction using Gaussian dual-space density functional theory. J. Vac. Sci. Technol. B 13, 1715–1727 (1995)

    Article  Google Scholar 

  71. 71.

    Heyd, J., Peralta, J.E., Scuseria, G.E.: Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101–174107 (2005)

    Article  Google Scholar 

  72. 72.

    Kootstra, F., de Boeij, P.L., Snijders, J.G.: Application of time-dependent density-functional theory to the dielectric function of various nonmetallic crystals. Phys. Rev. B 62, 7071–7083 (2000)

    Article  Google Scholar 

  73. 73.

    Wang, C.S., Klein, B.M.: First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe. I. Self-consistent energy bands, charge densities, and effective masses. Phys. Rev. B 24, 3393–3416 (1981)

    Article  Google Scholar 

  74. 74.

    Jansen, R.W., Sankey, O.F.: Ab initio linear combination of pseudo-atomic-orbital scheme for the electronic properties of semiconductors: results for ten materials. Phys. Rev. B 36, 6520–6531 (1987)

    Article  Google Scholar 

  75. 75.

    Fleszar, A., Hanke, W.: Electronic structure of IIB-VI semiconductors in the GW approximation. Phys. Rev. B 71, 045207–045211 (2005)

    Article  Google Scholar 

  76. 76.

    Oshikiri, M., Aryasetiawan, F.: Band gaps and quasiparticle energy calculations on ZnO, ZnS, and ZnSe in the zinc-blende structure by the GW approximation. Phys. Rev. B 60, 10754–10757 (1999)

    Article  Google Scholar 

  77. 77.

    Lee, G.D., Lee, M.H., Ihm, J.: Role of d electrons in the zinc-blende semiconductors Zns, Znse, and ZnTe. Phys. Rev. B 52, 1459–1462 (1995)

    Article  Google Scholar 

  78. 78.

    Lee, S.G., Chang, K.J.: First-principles study of the structural properties of MgS-, MgSe-, ZnS-, and ZnSe-based superlattices. Phys. Rev. B 52, 1918–1925 (1995)

    Article  Google Scholar 

  79. 79.

    Casali, R.A., Christensen, N.E.: Elastic constants and deformation potentials of ZnS and ZnSe under pressure. Solid State Commun. 108, 793–798 (1998)

    Article  Google Scholar 

  80. 80.

    Gangadharan, R., Jayalakshmi, V., Kalaiselvi, J., Mohan, S., Murugan, R., Palanivel, B.: Electronic and structural properties of zinc chalcogenides ZnX (X = S, Se, Te). J. Alloys Compd. 359, 22–26 (2003)

    Article  Google Scholar 

  81. 81.

    Smelyansky, V.I., Tse, J.S.: Theoretical study on the high-pressure phase transformation in ZnSe. Phys. Rev. B 52, 4658–4661 (1995)

    Article  Google Scholar 

  82. 82.

    Okoye, C.M.I.: First-principles study of the electronic and optical properties of zincblende zinc selenide. Phys. B 337, 1–9 (2003)

    Article  Google Scholar 

  83. 83.

    Khenata, R., Bouhemadou, A., Sahnoun, M., Reshak, A.H., Baltache, H., Rabah, M.: Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Comput. Mater. Sci. 38, 29–38 (2006)

    Article  Google Scholar 

  84. 84.

    Bilal, M., Shafiq, M., Ahmad, I., Khan, I.: First principle studies of structural, elastic, electronic and optical properties of Zn-chalcogenides under pressure. J. Semicond. 35, 072001–072009 (2014)

    Article  Google Scholar 

  85. 85.

    Shakil, M., Zafar, M., Ahmed, S., Raza-ur-rehman, Hashmi M., Choudhary, M.A., Iqbal, T.: Theoretical calculations of structural, electronic, and elastic properties of CdSe1 − xTex: a first principles study. Chin. Phys. B 25, 076104–076110 (2016)

    Article  Google Scholar 

  86. 86.

    Reshak, A.H., Kityk, I.V., Khenata, R., Auluck, S.: Effect of increasing tellurium content on the electronic and optical properties of cadmium selenide telluride alloys CdSe1−xTex: an ab initio study. J. Alloys Compd. 509, 6737–6750 (2011)

    Article  Google Scholar 

  87. 87.

    Ouendadji, S., Ghemid, S., Bouarissa, N., Meradji, H., El Haj Hassan, F.: Ab initio study of structural, electronic, phase diagram, and optical properties of CdSexTe1−x semiconducting alloys. J. Mater. Sci. 46, 3855–3861 (2011)

    Article  Google Scholar 

  88. 88.

    Bernard, J.E., Zunger, A.: Optical bowing in zinc chalcogenide semiconductor alloys. Phys. Rev. B 34, 5992–5996 (1986)

    Article  Google Scholar 

  89. 89.

    Ozaki, S., Adachi, S.: Optical constants of ZnSexTe1-xternary alloys. Jpn. J. Appl. Phys. 32, 2620–2625 (1993)

    Article  Google Scholar 

  90. 90.

    Zaoui, A., Certier, M., Ferhat, M., Pages, O., Aourag, H.: Disorder effects on electronic and optical properties in ZnSexTe1−x. J. Cryst. Growth 184–185, 1090–1094 (1998)

    Article  Google Scholar 

  91. 91.

    El Haj Hassan, F., Amrani, B., Bahsoun, F.: Ab initio investigations of zinc chalcogenides semiconductor alloys. Phys. B 391, 363–370 (2007)

    Article  Google Scholar 

  92. 92.

    Zhu, Y., Zhang, S.H., Zhang, X.Y., Hao, A.M., Zhang, S.L., Yang, F., Yang, J.K., Liu, R.P.: Structural, elastic, and thermodynamic properties of ZnSexTe1−x: a first-principles study. Comput. Mater. Sci. 50, 2745–2749 (2011)

    Article  Google Scholar 

  93. 93.

    Korozlu, N., Colakoglu, K., Deligoz, E., Ciftci, Y.O.: The structural, electronic and optical properties of CdxZn1−xSe ternary alloys. Opt. Commun. 284, 1863–1867 (2011)

    Article  Google Scholar 

  94. 94.

    Ameri, M., Fodil, M., Benkabou, F.Z.A., Mahdjoub, Z., Boufadi, F., Bentouaf, A.: Physical properties of the ZnxCd1-xSe alloys: ab-initio method. Mater. Sci. Appl. 3, 768–778 (2012)

    Google Scholar 

  95. 95.

    Mnasri, S., Abdi-Ben Nasrallah, S., Sfina, N., Bouarissa, N., Said, M.: Electronic, lattice vibration and mechanical properties of CdTe, ZnTe, MnTe, MgTe, HgTe and their ternary alloys. Semicond. Sci. Technol. 24, 095008–095015 (2009)

    Article  Google Scholar 

  96. 96.

    Korozlu, N., Colakoglu, K., Deligoz, E.: Structural, electronic, elastic and optical properties of CdxZn1−xTe mixed crystals. J. Phys. Condens. Matter 21, 175406–175412 (2009)

    Article  Google Scholar 

  97. 97.

    Bouarissa, N., Atik, Y.: Elastic constants and acoustic wave velocities in Cd1-xZnxTe mixed crystals. Mod. Phys. Lett. B 22, 1221–1229 (2008)

    MATH  Article  Google Scholar 

  98. 98.

    Yassin, O.A.: Electronic and optical properties of Zn0.75Cd0.25S1−zSez first-principles calculations based on the Tran-Blaha modified Becke-Johnson potential. Optik 127, 1817–1821 (2016)

    Article  Google Scholar 

  99. 99.

    Murtaza, G., Ullah, N., Rauf, A., Khenata, R., Bin Omran, S., Sajjad, M., Waheed, A.: First principles study of structural, optical, and electronic properties of zinc mercury chalcogenides. Mater. Sci. Semicond. Proc. 30, 462–468 (2015)

    Article  Google Scholar 

  100. 100.

    Noor, N.A., Tahir, W., Aslam, F., Shaukat, A.: Ab initio study of structural, electronic and optical properties of Be-doped CdS, CdSe and CdTe compounds. Physica B 407, 943–952 (2012)

    Article  Google Scholar 

  101. 101.

    Zhou, J.: Recent progress on 2D group II-VI binary chalcogenides ZnX and CdX (X = S, Se, Te): from a theoretical perspective. Adv. Theory Simul. (2019).

    Article  Google Scholar 

  102. 102.

    Mezrag, F., Bouarissa, N., Boucenna, M., Hannachi, L.: The effect of zinc concentration upon optical and dielectric properties of Cd1-xZnxSe. Phys. Scr. 82, 035702–035706 (2010)

    Article  Google Scholar 

  103. 103.

    Benkabou, K., Amrane, N., Maachou, M.: Electronic band structure of quaternary alloy ZnyCd1−ySexTe1−x. J. Alloys Compd. 465, 305–309 (2008)

    Article  Google Scholar 

  104. 104.

    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964)

    MathSciNet  Article  Google Scholar 

  105. 105.

    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    MathSciNet  Article  Google Scholar 

  106. 106.

    Reshak, A. H.: Spin-polarized second harmonic generation from the antiferromagnetic CaCoSO single crystal. Scientific Reports (2017).

  107. 107.

    Reshak, A.H.: Ab initio study of TaON, an active photocatalyst under visible light irradiation. Phys. Chem. Chem. Phys. 16, 10558–10565 (2014)

    Article  Google Scholar 

  108. 108.

    Davydyuk, G.E., Khyzhun, O.Y., Reshak, A.H., Kamarudind, H., Myronchuk, G.L., Danylchuk, S.P., Fedorchuk, A.O., Piskach, L.V., Mozolyuk, MYu., Parasyuk, O.V.: Photoelectrical properties and the electronic structure of Tl1−xIn1−xSnxSe2 (x = 0, 0.1, 0.2, 0.25) single crystalline alloys. Phys. Chem. Chem. Phys. 15, 6965–6972 (2013)

    Article  Google Scholar 

  109. 109.

    Reshak, A.H., Kogut, Y.M., Fedorchuk, A.O., Zamuruyeva, O.V., Myronchuk, G.L., Parasyuk, O.V., Kamarudin, H., Auluck, S., Plucinski, K.J., Bila, J.: Linear, non-linear optical susceptibilities and the hyperpolarizability of the mixed crystals Ag0.5Pb1.75Ge(S1−xSex)4: experiment and theory. Phys. Chem. Chem. Phys. 15, 18979–18986 (2013)

    Article  Google Scholar 

  110. 110.

    Reshak, A.H., Stys, D., Auluck, S., Kityk, I.V.: Dispersion of linear and nonlinear optical susceptibilities and the hyperpolarizability of 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole. Phys. Chem. Chem. Phys. 13, 2945–2952 (2011)

    Article  Google Scholar 

  111. 111.

    Reshak, A.H.: Fe2MnSixGe1-x: influence thermoelectric properties of varying the germanium content. RSC Adv. 4, 39565–39571 (2014)

    Article  Google Scholar 

  112. 112.

    Reshak, A.H.: Thermoelectric properties for AA- and AB-stacking of a carbon nitride polymorph (C3N4). RSC Adv. 4, 63137–63142 (2014)

    Article  Google Scholar 

  113. 113.

    Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 42, 3063–3083 (1975)

    Google Scholar 

  114. 114.

    Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.K.: Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 59, 339–415 (1990)

    Article  Google Scholar 

  115. 115.

    Blaha, P., Schwarz, K., Madsen, G.H., Kbasnicka, D., Luitz, J.: FP-LAPW+lo program for calculating crystal properties, Technische. WIEN2K, Austria, (2001)

  116. 116.

    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  117. 117.

    Becke, A.D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124, 221101–221104 (2006)

    Article  Google Scholar 

  118. 118.

    Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401–226404 (2009)

    Article  Google Scholar 

  119. 119.

    Engel, E., Vosko, S.H.: Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Phys. Rev. B 47, 13164–13174 (1993)

    Article  Google Scholar 

  120. 120.

    Kokalj, A.: Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28, 155–168 (2003). Code available from

  121. 121.

    Hacini, K., Meradji, H., Ghemid, S., El Haj Hassan, F.: Theoretical prediction of structural, electronic and optical properties of quaternary alloy Zn1−xBexSySe1−y. Chin. Phys. B 21, 036102–036108 (2012)

    Article  Google Scholar 

  122. 122.

    Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U.S.A. 30, 244–247 (1944)

    MathSciNet  MATH  Article  Google Scholar 

  123. 123.

    Vegard, L.: The constitution of the mixed crystals and the space filling of the atoms. Z. Phys. 5, 17–26 (1921)

    Article  Google Scholar 

  124. 124.

    Jobst, B., Hommel, D., Lunz, U., Gerhard, T., Landwehr, G.: E0 band-gap energy and lattice constant of ternary Zn1−xMgxSe as functions of composition. Appl. Phys. Lett. 69, 97–99 (1996)

    Article  Google Scholar 

  125. 125.

    Dismukes, J.P., Ekstrom, L., Paff, R.J.: Lattice parameter and density in germanium-silicon alloys. J. Phys. Chem. 68, 3021–3027 (1964)

    Article  Google Scholar 

  126. 126.

    Fox, M.: Optical Properties of Solids. Oxford University Press, Oxford (2001)

    Google Scholar 

  127. 127.

    Sifi, C., Meradrji, H., Silmani, M., Labidi, S., Ghemid, S., Hanneche, E.B., El Haj Hassan, F.: First principle calculations of structural, electronic, thermodynamic and optical properties of Pb1−xCaxS, Pb1−xCaxSe and Pb1−xCaxTe ternary alloys. J. Phys. Cond. Matter 21, 195401–195409 (2009)

    Article  Google Scholar 

  128. 128.

    Dadsetani, M., Pourghazi, A.: Optical properties of strontium monochalcogenides from first principles. Phys. Rev. B 73, 195102–195108 (2006)

    Article  Google Scholar 

  129. 129.

    Penn, D.R.: Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)

    MATH  Article  Google Scholar 

  130. 130.

    Okuyama, H., Kishita, Y., Ishibashi, A.: Quaternary alloy Zn1-xMgxSySe1-y. Phys. Rev. B 57, 2257–2263 (1998)

    Article  Google Scholar 

Download references


The authors are grateful to UGC, Govt. of India for financial support to carry out this research work through financial assistance under UGC–SAP program 2016 [ref. no. F.530/23/DRS-I/2018 (SAP-I)].

Author information



Corresponding author

Correspondence to Surya Chattopadhyaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9764 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chanda, S., Ghosh, D., Debnath, B. et al. Calculations of the structural and optoelectronic properties of cubic CdxZn1−xSeyTe1−y semiconductor quaternary alloys using the DFT-based FP-LAPW approach. J Comput Electron 19, 1–25 (2020).

Download citation


  • CdZnSeTe quaternary alloys
  • MBJ and EV-GGA
  • Structural properties
  • Optoelectronic properties
  • Lattice matching
  • ZnTe, InAs, GaSb, and InP substrates