Abstract
The structural and optoelectronic properties of technologically important CdxZn1−xSeyTe1−y quaternary alloys have been calculated using the density functional theory (DFT)-based full potential (FP)-linearized augmented plane wave (LAPW) approach. The exchange–correlation potentials are calculated using the Perdew–Burke–Ernzerhof (PBE)-generalized gradient approximation (GGA) scheme for the structural properties and both the modified Becke–Johnson (mBJ) and Engel–Vosko (EV)-GGA schemes for the optoelectronic properties. A direct bandgap (\( \varGamma \)–\( \varGamma \)) is observed for all the examined compositions in the CdxZn1−xSeyTe1−y quaternary system. At each cationic (Cd) concentration x, the lattice constant decreases while the bulk modulus and bandgap increase nonlinearly with increasing anionic (Se) concentration y. On the other hand, a nonlinear increase in the lattice constant but a decrease in the bulk modulus and bandgap are observed with increasing cationic concentration x at each anionic concentration y. The contour maps calculated for the lattice constant and energy bandgap will be useful for designing new quaternary alloys with desired optoelectronic properties. Several interesting features are observed based on the study of the optical properties of the alloys. The compositional dependence of each calculated zero-frequency limit shows the opposite trend, while each calculated critical point shows a similar trend, with respect to that found for the compositional dependence of the bandgap. Finally, the results of these calculations suggest that ZnTe, InAs, GaSb, and InP are suitable substrates for the growth of several zincblende CdxZn1−xSeyTe1−y quaternary alloys.
This is a preview of subscription content, access via your institution.












References
- 1.
Nelmes, R.J., McMohan, M.I.: Structural transitions in the group IV, III-V, and II-VI semiconductors under pressure. Semicond. Semimetals 54, 145–246 (1998)
- 2.
Eckelt, P.: Energy band structures of cubic ZnS, ZnSe, ZnTe, and CdTe (Korringa-Kohn-Rostoker method). Phys. Stat. Sol. 23, 307–312 (1967)
- 3.
Wang, J., Isshiki, M.: Wide-Band-gap II–VI Semiconductors: Growth and properties. In: Kaspa, S., Capper, P. (eds.) Springer Handbook of Electronic and Photonic Materials, pp. 325–342. Springer, Berlin (2006)
- 4.
Adachi, S.: Properties of Group-IV, III–V and II–VI Semiconductors. Wiley, London (2005)
- 5.
Van de Walle, C.G.: Wide-Band-Gap Semiconductors. North Holland, Amsterdam (1993)
- 6.
Huynh, W.U., Dittmer, J.J., Alivisato, A.P.: Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002)
- 7.
Salavei, A., Rimmaudo, I., Piccinelli, F., Romeo, A.: Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells. Thin Solid Films 535, 257–260 (2013)
- 8.
Crossay, A., Buecheler, S., Kranz, L., Perrenoud, J., Fella, C.M., Romanyuk, Y.E., Tiwari, A.N.: Spray-deposited Al-doped ZnO transparent contacts for CdTe solar cells. Solar Energy Mater. Sol. Cells 101, 283–288 (2012)
- 9.
Nakayama, N., Matsumoto, H., Yamaguchi, K., Ikegami, S., Hioki, Y.: Ceramic thin film CdTe solar cell. Jpn. J. Appl. Phys. 15, 2281–2282 (1976)
- 10.
Shieh, F., Saunders, A.E., Korgel, B.A.: General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J. Phys. Chem. B 109, 8538–8542 (2005)
- 11.
Peng, Z.A., Peng, X.G.: Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2001)
- 12.
Colvin, V.L., Schlamp, M.C., Alivisatos, A.P.: Light emitting diodes made from cadmium selenide nanocrystals and a conducting polymer. Nature 370, 354–357 (1994)
- 13.
Greenham, N.C., Peng, X., Alivisatos, A.P.: Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity. Synth. Met. 84, 545–546 (1997)
- 14.
Xi, L.F., Chua, K.H., Zhao, Y.Y., Zhang, J., Xiong, Q.H., Lam, Y.M.: Controlled synthesis of CdE (E = S, Se and Te) nanowires. RSC Adv. 2, 5243–5253 (2012)
- 15.
Chen, X., Liu, R., Qiao, S., Mao, J., Du, X.: Synthesis of cadmium chalcogenides nanowires via laser-activated gold catalysts in solution. Mater. Chem. Phys. 212, 408–414 (2018)
- 16.
Dabbousi, B.O., Bawendi, M.G., Rubner, O.O.: Electroluminescence from CdSe quantumdot/polymer composites. Appl. Phys. Lett. 66, 1316–1318 (1995)
- 17.
Thuy, U.T.D., Toan, P.S., Chi, T.T.K., Khang, D.D., Liem, N.Q.: CdTe quantum dots for an application in the life sciences. Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045009–045014 (2010)
- 18.
Liyanage, W.P.R., Wilson, J.S., Kinzel, E.C., Dorant, B.K.: Fabrication of CdTe nanorod arrays over large area through patterned electrodeposition for efficient solar energy conversion. Sol. Energy Mater. Sol. Cells 133, 260–267 (2015)
- 19.
Hasse, M.A., Qui, J., De Puydt, J.M., Cheng, H. Blue-green laser diodes. Appl. Phys. Lett. 59, 1272–1274 (1991)
- 20.
Wagner, H.P., Wittmann, S., Schmitzer, H., Stanzl, H.: Phase matched second harmonic generation using thin film ZnTe optical waveguides. J. Appl. Phys. 77, 3637–3640 (1995)
- 21.
Tamargo, M.C., Brasil, M.J.S.P., Nahory, R.E., Martin, R.J., Weaver, A.L., Gilchrist, H.L.: MBE growth of the (Zn, Cd)(Se, Te) system for wide-bandgap heterostructure lasers. Semicond. Sci. Technol. 6, A8–A13 (1991)
- 22.
Medelung, O.: Landolt Bornstein: Numerical Data and Functional Relationship in Science and Technology, vol. 17b. Springer, Berlin (1982)
- 23.
Abrikosov, N.K., Bankina, V.B., Poretskaya, L.V., Shelimova, L.E., Skudnova, E.V.: Semiconducting II-VI IV-VI and V-VI Compounds. Plenum, New York (1969)
- 24.
Strehlow, W.H., Cook, E.L.: Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J. Phys. Chem. Ref. Data 2, 163–199 (1973)
- 25.
Harrison, W.A.: Electronic Structure and the Properties of Solids. Freeman, San-Francisco (1980)
- 26.
Manabe, A., Mitsuishi, A., Yoshinaga, H.: Infrared lattice reflection spectra of II-VI compounds. Jpn. J. Appl. Phys. 6, 593–600 (1967)
- 27.
Marple, D.T.F.: Refractive index of ZnSe, ZnTe, and CdTe. J. Appl. Phys. 35, 539–542 (1964)
- 28.
Lee, B.H.: Pressure dependence of the second-order elastic constants of ZnTe and ZnSe. J. Appl. Phys. 41, 2988–2990 (1970)
- 29.
Berlincourt, D., Jaffe, H., Shiozawa, L.R.: Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium. Phys. Rev. 29, 1009–1017 (1963)
- 30.
Kim, Y.D., Klein, M.V., Ren, S.F., Chen, Y.C., Lou, H., Samarth, N., Furdyna, J.K.: Optical properties of zinc-blende CdSe and Zn„Cd& Se films grown on GaAs. Phys. Rev. B 49, 7262–7270 (1994)
- 31.
Garcia, V.M., Nair, M.T.S., Nair, P.K., Zingaro, R.A.: Preparation of highly photosensitive CdSe thin films by a chemical bath deposition technique. Semicond. Sci. Technol. 11, 427–432 (1996)
- 32.
Toma, O., Ion, L., Girtan, M., Antohe, S.: Optical, morphological and electrical studies of thermally vacuum evaporated CdTe thin films for photovoltaic applications. Sol. Energy 108, 51–60 (2014)
- 33.
Okamoto, T., Hayashi, R., Ogawa, Y., Hosono, A., Doi, M.: Fabrication of polycrystalline CdTe thin-film solar cells using carbon electrodes with carbon nanotubes. Jpn. J. Appl. Phys. 54, 04DR01–04DR04 (2015)
- 34.
Kim, Y.D., Cooper, S.L., Klein, M.V.: Optical characterization of pure ZnSe films grown on GaAs. Appl. Phys. Lett. 62, 2387–2389 (1993)
- 35.
Hsu, C.H., Yan, C.Y., Kao, W.H., Yu, Y.T., Tung, H.H.: Properties of ZnTe thin films on silicon substrate. Ferroelectrics 491, 118–126 (2016)
- 36.
Camacho, J., Cantarero, A., Hernández-Calderon, I., Gonzalez, L.: Raman spectroscopy and photoluminescence of ZnTe thin films grown on GaAs. J. Appl. Phys. 92, 6014–6018 (2002)
- 37.
Watanabe, K., Litz, M.T., Korn, M., Ossau, W., Waag, A., Landwehr, G., Schussler, U.: Optical properties of ZnTe/Zn1−xMgxSeyTe1−y quantum wells and epilayers grown by molecular beam epitaxy. J. Appl. Phys. 81, 451–455 (1997)
- 38.
Muthukumarasamy, N., Velumani, S., Balasundaraprabhu, R., Jayakumar, S., Kannan, M.D.: Fabrication and characterization of n-CdSe0.7Te0.3/p-CdSe0.15Te0.85 solar cell. Vacuum 84, 1216–1219 (2010)
- 39.
MacDonald, B.I., Martucci, A., Rubanov, S., Watkins, S.E., Mulvaney, P., Jasieniak, J.J.: Layer-by-layer assembly of sintered CdSexTe1–x nanocrystal solar cells. ACS Nano 6, 5995–6004 (2012)
- 40.
Wen, S., Li, M., Yang, J., Mei, X., Wu, B., Liu, X., Heng, J., Qin, D., Hou, L., Xu, W., Wang, D.: Rationally controlled synthesis of CdSexTe1−x alloy nanocrystals and their application in efficient graded bandgap solar cells. Nanomaterials 7, 380–392 (2017)
- 41.
Wen, S., Li, M., Yang, J., Mei, X., Wu, B., Liu, X., Heng, J., Qin, D., Hou, L., Xu, W., Wang, D.: Rationally controlled synthesis of CdSexTe1–x alloy nanocrystals and their application in efficient graded bandgap solar cells. Nanomaterials (2017). https://doi.org/10.3390/nano7110380
- 42.
Asano, H., Arai, K., Kita, M., Omata, T.: Synthesis of colloidal Zn(Te, Se) alloy quantum dots. Mater. Res. Exp. 4, 106501–106510 (2017)
- 43.
Xu, F., Xue, B., Wang, F., Dong, A.: Ternary alloyed ZnSexTe1–x nanowires: solution-phase synthesis and band gap bowing. Chem. Mater. 27, 1140–1146 (2015)
- 44.
Lu, J., Liu, H., Zhang, X., Sow, C.H.: One-dimensional nanostructures of II-VI ternary alloys: synthesis, optical properties, and applications. Nanoscale (2018). https://doi.org/10.1039/C8NR05019H
- 45.
Benkert, A., Schumacher, C., Brunner, K., Neder, R.B.: Monitoring of ZnCdSe layer properties by in situ x-ray diffraction during heteroepitaxy on (001) GaAs substrates. Appl. Phys. Lett. 90, 162105–162107 (2007)
- 46.
Lin, W., Tamargo, M.C., Wei, H.Y., Sarney, W., Salamanca-Riba, L., Fitzpatrick, B.J.: Molecular-beam epitaxy growth and nitrogen doping of hexagonal ZnSe and ZnCdSe/ZnSe quantum well structures on hexagonal ZnMgSSe bulk substrates. J. Vac. Sci. Tech. B 18, 1711–1715 (2000)
- 47.
Kawakami, Y., Yamaguchi, S., Wu, Y.H., Ichino, K., Fujita, S.Z., Fujita, S.G.: Optically pumped blue-green laser operation above room-temperature in Zn0.80Cd0.20Se-ZnS0.08Se0.92 multiple quantum well structures grown by metalorganic molecular beam epitaxy. Jpn. J. Appl. Phys. 30, L605–L607 (1991)
- 48.
Yilmaz, E.: An investigation of CdZnTe thin films for photovoltaics. Energy Sources 34, 332–335 (2012)
- 49.
Rajesh, G., Muthukumarasamy, N., Velauthapillai, D., Mohanta, K., Ragavendran, V., Batabyal, S.K.: Photoinduced electrical bistability of sputter deposited CdZnTe thin films. Mater. Res. Exp. 5, 026412–026419 (2018)
- 50.
Znamenshchykov, Y.V., Kosyak, V.V., Opanasyuk, A.S., Kolesnyk, M.M., Fochuk, P.M., Cerskus, A.: Structural and optical properties of Cd1-xZnxTe thick films with high Zn concentrations. In: IEEE 7th International Conference on Nanomaterials: Applications and Properties (2017)
- 51.
Wang, L., Chen, C., Jin, G., Feng, T., Du, X., Liu, F., Sun, H., Yang, B., Sun, H.: Manipulating depletion region of aqueous-processed nanocrystals solar cells with widened Fermi level offset. Nano Micro Small (2018). https://doi.org/10.1002/smll.201803072
- 52.
Levy, M., Chowdhury, P.P., Eller, K.A., Chatterjee, A., Nagpal, P.: Tuning ternary Zn1−xCdxTe quantum dot composition: engineering electronic states for light-activated superoxide generation as a therapeutic against multidrug-resistant bacteria. ACS Biomater. Sci. Eng. 5, 3111–3118 (2019)
- 53.
Chen, Y.P., Brill, G., Campo, E.M., Hierl, T., Hwang, J.C.M., Dhar, N.K.: Molecular beam epitaxial growth of Cd1−yZnySexTe1−x on Si(211). J. Electron. Mater. 33, 498–502 (2004)
- 54.
Nomura, I., Ochiai, Y., Toyomura, N., Manoshiro, A., Kikuchi, A., Kishino, K.: Yellow–green lasing operations of ZnCdTe/MgZnSeTe laser diodes on ZnTe substrates. Phys. Stat. Sol. B 241, 483–486 (2004)
- 55.
Brasil, M.J.S.P., Tamargo, M.C., Nahoty, R.E., Gilchrist, H.L., Martin, R.J.: Zn1 − yCdySe1 − xTex quaternary wide band-gap alloys: molecular beam epitaxial growth and optical properties. Appl. Phys. Lett. 59, 1206–1208 (1991)
- 56.
Gaikwad, S.A., Tembhurkar, Y.D., Dudhe, C.M.: Study of optical, morphological and electrical properties of CdZnSeTe thin films prepared by spray pyrolysis method. Int. J. Pure Appl. Phys. 13, 339–347 (2017)
- 57.
Roy, U.N., Camarda, G.S., Cui, Y., Gul, R., Yang, G., Zazvorka, J., Dedic, V., Franc, J., James, R.B.: Evaluation of CdZnTeSe as a high quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Scientific Reports (2019). https://doi.org/10.1038/s41598-019-43778-3
- 58.
Huang, M.Z., Ching, W.Y.: A minimal basis semi-ab initio approach to the band structures of semiconductors. J. Phys. Chem. Solids 46, 977–995 (1985)
- 59.
Huang, M.Z., Ching, W.Y.: Calculation of optical excitations in cubic semiconductors. I. Electronic structure and linear response. Phys. Rev. B 47, 9449–9463 (1993)
- 60.
Deligoz, E., Colakoglu, K., Ciftci, Y.: Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe. Physica B 373, 124–130 (2006)
- 61.
Ouendadji, S., Ghemid, S., Meradji, H., El Haj Hassan, F.: Theoretical study of structural, electronic, and thermal properties of CdS, CdSe and CdTe compounds. Comput. Mater. Sci. 50, 1460–1466 (2011)
- 62.
Sharma, S., Verma, A.S., Sarkar, B.K., Bhandari, R., Jindal, V.K.: First principles study on the elastic and electronic properties of CdX (Se and Te). AIP Conf. Proc. 1393, 229–230 (2011)
- 63.
Wei, S.H., Zhang, S.B.: Structure stability and carrier localization in CdX (X = S, Se, Te) semiconductors. Phys. Rev. B 62, 6944–6947 (2000)
- 64.
Guo, L., Zhang, S., Feng, W., Hu, G., Li, W.: A first-principles study on the structural, elastic, electronic, optical, lattice dynamical, and thermodynamic properties of zinc-blende CdX (X = S, Se, and Te). J. Alloys Compd. 579, 583–593 (2013)
- 65.
Sarkar, S., Pal, S., Sarkar, P., Rosa, A.L., Frauenheim, Th: Self-consistent-charge density-functional tight-binding parameters for Cd–X (X = S, Se, Te) compounds and their interaction with H, O, C, and N. J. Chem. Theor. Comput. 7, 2262–2276 (2011)
- 66.
Cote, M., Zakharov, O., Rubio, A., Cohen, M.L.: Ab initio calculations of the pressure-induced structural phase transitions for four II-VI compounds. Phys. Rev. B 55, 13025–13031 (1997)
- 67.
Hosseini, S.M.: Optical properties of cadmium telluride in zinc-blende and wurzite structure. Phys. B 403, 1907–1915 (2008)
- 68.
Corsa, A.D., Baroni, S., Resta, R., Gironcoli, S.: Ab initio calculation of phonon dispersions in II-VI semiconductors. Phys. Rev. B 47, 3588–3592 (1993)
- 69.
Zakharov, O., Rubio, A., Blase, X., Cohen, M.L., Loui, S.G.: Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys. Rev. B 50, 10780–10787 (1994)
- 70.
Chen, X.J., Mintz, A., Hu, J.S., Hua, X.L., Zinck, J., Goddard-III, W.A.: First principles studies of band offsets at heterojunctions and of surface reconstruction using Gaussian dual-space density functional theory. J. Vac. Sci. Technol. B 13, 1715–1727 (1995)
- 71.
Heyd, J., Peralta, J.E., Scuseria, G.E.: Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101–174107 (2005)
- 72.
Kootstra, F., de Boeij, P.L., Snijders, J.G.: Application of time-dependent density-functional theory to the dielectric function of various nonmetallic crystals. Phys. Rev. B 62, 7071–7083 (2000)
- 73.
Wang, C.S., Klein, B.M.: First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe. I. Self-consistent energy bands, charge densities, and effective masses. Phys. Rev. B 24, 3393–3416 (1981)
- 74.
Jansen, R.W., Sankey, O.F.: Ab initio linear combination of pseudo-atomic-orbital scheme for the electronic properties of semiconductors: results for ten materials. Phys. Rev. B 36, 6520–6531 (1987)
- 75.
Fleszar, A., Hanke, W.: Electronic structure of IIB-VI semiconductors in the GW approximation. Phys. Rev. B 71, 045207–045211 (2005)
- 76.
Oshikiri, M., Aryasetiawan, F.: Band gaps and quasiparticle energy calculations on ZnO, ZnS, and ZnSe in the zinc-blende structure by the GW approximation. Phys. Rev. B 60, 10754–10757 (1999)
- 77.
Lee, G.D., Lee, M.H., Ihm, J.: Role of d electrons in the zinc-blende semiconductors Zns, Znse, and ZnTe. Phys. Rev. B 52, 1459–1462 (1995)
- 78.
Lee, S.G., Chang, K.J.: First-principles study of the structural properties of MgS-, MgSe-, ZnS-, and ZnSe-based superlattices. Phys. Rev. B 52, 1918–1925 (1995)
- 79.
Casali, R.A., Christensen, N.E.: Elastic constants and deformation potentials of ZnS and ZnSe under pressure. Solid State Commun. 108, 793–798 (1998)
- 80.
Gangadharan, R., Jayalakshmi, V., Kalaiselvi, J., Mohan, S., Murugan, R., Palanivel, B.: Electronic and structural properties of zinc chalcogenides ZnX (X = S, Se, Te). J. Alloys Compd. 359, 22–26 (2003)
- 81.
Smelyansky, V.I., Tse, J.S.: Theoretical study on the high-pressure phase transformation in ZnSe. Phys. Rev. B 52, 4658–4661 (1995)
- 82.
Okoye, C.M.I.: First-principles study of the electronic and optical properties of zincblende zinc selenide. Phys. B 337, 1–9 (2003)
- 83.
Khenata, R., Bouhemadou, A., Sahnoun, M., Reshak, A.H., Baltache, H., Rabah, M.: Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Comput. Mater. Sci. 38, 29–38 (2006)
- 84.
Bilal, M., Shafiq, M., Ahmad, I., Khan, I.: First principle studies of structural, elastic, electronic and optical properties of Zn-chalcogenides under pressure. J. Semicond. 35, 072001–072009 (2014)
- 85.
Shakil, M., Zafar, M., Ahmed, S., Raza-ur-rehman, Hashmi M., Choudhary, M.A., Iqbal, T.: Theoretical calculations of structural, electronic, and elastic properties of CdSe1 − xTex: a first principles study. Chin. Phys. B 25, 076104–076110 (2016)
- 86.
Reshak, A.H., Kityk, I.V., Khenata, R., Auluck, S.: Effect of increasing tellurium content on the electronic and optical properties of cadmium selenide telluride alloys CdSe1−xTex: an ab initio study. J. Alloys Compd. 509, 6737–6750 (2011)
- 87.
Ouendadji, S., Ghemid, S., Bouarissa, N., Meradji, H., El Haj Hassan, F.: Ab initio study of structural, electronic, phase diagram, and optical properties of CdSexTe1−x semiconducting alloys. J. Mater. Sci. 46, 3855–3861 (2011)
- 88.
Bernard, J.E., Zunger, A.: Optical bowing in zinc chalcogenide semiconductor alloys. Phys. Rev. B 34, 5992–5996 (1986)
- 89.
Ozaki, S., Adachi, S.: Optical constants of ZnSexTe1-xternary alloys. Jpn. J. Appl. Phys. 32, 2620–2625 (1993)
- 90.
Zaoui, A., Certier, M., Ferhat, M., Pages, O., Aourag, H.: Disorder effects on electronic and optical properties in ZnSexTe1−x. J. Cryst. Growth 184–185, 1090–1094 (1998)
- 91.
El Haj Hassan, F., Amrani, B., Bahsoun, F.: Ab initio investigations of zinc chalcogenides semiconductor alloys. Phys. B 391, 363–370 (2007)
- 92.
Zhu, Y., Zhang, S.H., Zhang, X.Y., Hao, A.M., Zhang, S.L., Yang, F., Yang, J.K., Liu, R.P.: Structural, elastic, and thermodynamic properties of ZnSexTe1−x: a first-principles study. Comput. Mater. Sci. 50, 2745–2749 (2011)
- 93.
Korozlu, N., Colakoglu, K., Deligoz, E., Ciftci, Y.O.: The structural, electronic and optical properties of CdxZn1−xSe ternary alloys. Opt. Commun. 284, 1863–1867 (2011)
- 94.
Ameri, M., Fodil, M., Benkabou, F.Z.A., Mahdjoub, Z., Boufadi, F., Bentouaf, A.: Physical properties of the ZnxCd1-xSe alloys: ab-initio method. Mater. Sci. Appl. 3, 768–778 (2012)
- 95.
Mnasri, S., Abdi-Ben Nasrallah, S., Sfina, N., Bouarissa, N., Said, M.: Electronic, lattice vibration and mechanical properties of CdTe, ZnTe, MnTe, MgTe, HgTe and their ternary alloys. Semicond. Sci. Technol. 24, 095008–095015 (2009)
- 96.
Korozlu, N., Colakoglu, K., Deligoz, E.: Structural, electronic, elastic and optical properties of CdxZn1−xTe mixed crystals. J. Phys. Condens. Matter 21, 175406–175412 (2009)
- 97.
Bouarissa, N., Atik, Y.: Elastic constants and acoustic wave velocities in Cd1-xZnxTe mixed crystals. Mod. Phys. Lett. B 22, 1221–1229 (2008)
- 98.
Yassin, O.A.: Electronic and optical properties of Zn0.75Cd0.25S1−zSez first-principles calculations based on the Tran-Blaha modified Becke-Johnson potential. Optik 127, 1817–1821 (2016)
- 99.
Murtaza, G., Ullah, N., Rauf, A., Khenata, R., Bin Omran, S., Sajjad, M., Waheed, A.: First principles study of structural, optical, and electronic properties of zinc mercury chalcogenides. Mater. Sci. Semicond. Proc. 30, 462–468 (2015)
- 100.
Noor, N.A., Tahir, W., Aslam, F., Shaukat, A.: Ab initio study of structural, electronic and optical properties of Be-doped CdS, CdSe and CdTe compounds. Physica B 407, 943–952 (2012)
- 101.
Zhou, J.: Recent progress on 2D group II-VI binary chalcogenides ZnX and CdX (X = S, Se, Te): from a theoretical perspective. Adv. Theory Simul. (2019). https://doi.org/10.1002/adts.201900061
- 102.
Mezrag, F., Bouarissa, N., Boucenna, M., Hannachi, L.: The effect of zinc concentration upon optical and dielectric properties of Cd1-xZnxSe. Phys. Scr. 82, 035702–035706 (2010)
- 103.
Benkabou, K., Amrane, N., Maachou, M.: Electronic band structure of quaternary alloy ZnyCd1−ySexTe1−x. J. Alloys Compd. 465, 305–309 (2008)
- 104.
Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964)
- 105.
Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)
- 106.
Reshak, A. H.: Spin-polarized second harmonic generation from the antiferromagnetic CaCoSO single crystal. Scientific Reports (2017). https://doi.org/10.1038/srep46415
- 107.
Reshak, A.H.: Ab initio study of TaON, an active photocatalyst under visible light irradiation. Phys. Chem. Chem. Phys. 16, 10558–10565 (2014)
- 108.
Davydyuk, G.E., Khyzhun, O.Y., Reshak, A.H., Kamarudind, H., Myronchuk, G.L., Danylchuk, S.P., Fedorchuk, A.O., Piskach, L.V., Mozolyuk, MYu., Parasyuk, O.V.: Photoelectrical properties and the electronic structure of Tl1−xIn1−xSnxSe2 (x = 0, 0.1, 0.2, 0.25) single crystalline alloys. Phys. Chem. Chem. Phys. 15, 6965–6972 (2013)
- 109.
Reshak, A.H., Kogut, Y.M., Fedorchuk, A.O., Zamuruyeva, O.V., Myronchuk, G.L., Parasyuk, O.V., Kamarudin, H., Auluck, S., Plucinski, K.J., Bila, J.: Linear, non-linear optical susceptibilities and the hyperpolarizability of the mixed crystals Ag0.5Pb1.75Ge(S1−xSex)4: experiment and theory. Phys. Chem. Chem. Phys. 15, 18979–18986 (2013)
- 110.
Reshak, A.H., Stys, D., Auluck, S., Kityk, I.V.: Dispersion of linear and nonlinear optical susceptibilities and the hyperpolarizability of 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole. Phys. Chem. Chem. Phys. 13, 2945–2952 (2011)
- 111.
Reshak, A.H.: Fe2MnSixGe1-x: influence thermoelectric properties of varying the germanium content. RSC Adv. 4, 39565–39571 (2014)
- 112.
Reshak, A.H.: Thermoelectric properties for AA- and AB-stacking of a carbon nitride polymorph (C3N4). RSC Adv. 4, 63137–63142 (2014)
- 113.
Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 42, 3063–3083 (1975)
- 114.
Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.K.: Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 59, 339–415 (1990)
- 115.
Blaha, P., Schwarz, K., Madsen, G.H., Kbasnicka, D., Luitz, J.: FP-LAPW+lo program for calculating crystal properties, Technische. WIEN2K, Austria, (2001)
- 116.
Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)
- 117.
Becke, A.D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124, 221101–221104 (2006)
- 118.
Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401–226404 (2009)
- 119.
Engel, E., Vosko, S.H.: Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Phys. Rev. B 47, 13164–13174 (1993)
- 120.
Kokalj, A.: Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28, 155–168 (2003). Code available from http://www.xcrysden.org/
- 121.
Hacini, K., Meradji, H., Ghemid, S., El Haj Hassan, F.: Theoretical prediction of structural, electronic and optical properties of quaternary alloy Zn1−xBexSySe1−y. Chin. Phys. B 21, 036102–036108 (2012)
- 122.
Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U.S.A. 30, 244–247 (1944)
- 123.
Vegard, L.: The constitution of the mixed crystals and the space filling of the atoms. Z. Phys. 5, 17–26 (1921)
- 124.
Jobst, B., Hommel, D., Lunz, U., Gerhard, T., Landwehr, G.: E0 band-gap energy and lattice constant of ternary Zn1−xMgxSe as functions of composition. Appl. Phys. Lett. 69, 97–99 (1996)
- 125.
Dismukes, J.P., Ekstrom, L., Paff, R.J.: Lattice parameter and density in germanium-silicon alloys. J. Phys. Chem. 68, 3021–3027 (1964)
- 126.
Fox, M.: Optical Properties of Solids. Oxford University Press, Oxford (2001)
- 127.
Sifi, C., Meradrji, H., Silmani, M., Labidi, S., Ghemid, S., Hanneche, E.B., El Haj Hassan, F.: First principle calculations of structural, electronic, thermodynamic and optical properties of Pb1−xCaxS, Pb1−xCaxSe and Pb1−xCaxTe ternary alloys. J. Phys. Cond. Matter 21, 195401–195409 (2009)
- 128.
Dadsetani, M., Pourghazi, A.: Optical properties of strontium monochalcogenides from first principles. Phys. Rev. B 73, 195102–195108 (2006)
- 129.
Penn, D.R.: Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)
- 130.
Okuyama, H., Kishita, Y., Ishibashi, A.: Quaternary alloy Zn1-xMgxSySe1-y. Phys. Rev. B 57, 2257–2263 (1998)
Acknowledgements
The authors are grateful to UGC, Govt. of India for financial support to carry out this research work through financial assistance under UGC–SAP program 2016 [ref. no. F.530/23/DRS-I/2018 (SAP-I)].
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Chanda, S., Ghosh, D., Debnath, B. et al. Calculations of the structural and optoelectronic properties of cubic CdxZn1−xSeyTe1−y semiconductor quaternary alloys using the DFT-based FP-LAPW approach. J Comput Electron 19, 1–25 (2020). https://doi.org/10.1007/s10825-019-01409-0
Published:
Issue Date:
Keywords
- CdZnSeTe quaternary alloys
- MBJ and EV-GGA
- Structural properties
- Optoelectronic properties
- Lattice matching
- ZnTe, InAs, GaSb, and InP substrates