Skip to main content
Log in

Enhancement of the frequency peak of terahertz photoconductive antennas using metamaterial (MTM) superstrate structures

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A new design based on a metamaterial superstrate structure for THz photoconductive antennas is reported herein. To enhance the THz output frequency peaks, the use of metamaterials on THz photoconductive antennas is proposed, and simulated by using the CST Microwave Studio software. Use of such a metamaterial superstrate structure over the electrodes of an antenna leads to an enhancement of the frequency peak from 0.8 to 1.3 THz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tonouchi, M.: Cutting-edge THz technology. Nat. Photonics 1, 97–105 (2007)

    Article  Google Scholar 

  2. Auston, D.H., Chung, K.P., Smith, P.R.: Picosecond photoconducting Hertzian dipoles. Appl. Phys. Lett. 45, 284 (1984)

    Article  Google Scholar 

  3. Vodopyanov, K.L.: Optical THz-wave generation with periodically-inverted GaAs. Laser Photon. Rev. 2(1–2), 11–25 (2008)

    Article  Google Scholar 

  4. Tani, M., Matsuura, S., Sakai, K., Nakashima, S.: Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl. Opt. 36(30), 7853–7859 (1997)

    Article  Google Scholar 

  5. Brener, I., Dykaar, D., Frommer, A., Pfeiffer, L.N., Lopata, J., Wynn, J., West, K.: THz emission from electric field singularities in biased semiconductor. Opt. Lett. 21, 1924–1926 (1996)

    Article  Google Scholar 

  6. Kim, J.H., Polley, A., Ralph, S.E.: Efficient photoconductive THz source using line excitation. Opt. Lett. 30, 2490–2492 (2005)

    Article  Google Scholar 

  7. Zhang, J.: Characterization of the THz photoconductive antenna by three-dimensional finite difference time-domain method. arXiv:1406-3872, pp. 1–21 (2014)

  8. Piao, Z., Tani, M., Sakai, K.: Carrier dynamics and THz radiation in photoconductive antennas. Jpn. J. Appl. Phys. 39, 96–100 (2000)

    Article  Google Scholar 

  9. Nazeri, M., Massudi, R.: Study of a large area THz antenna by using a finite difference time domain method and lossy transmission line. Semicond. Sci. Technol. 25, 045007 (2010)

    Article  Google Scholar 

  10. Park, S.G., Jin, K.H., Yi, M., Ahn, J., Jeong, K.H.: Enhancement of THz pulse emission by optical nanoantenna. ACS Nano 6, 2026–2031 (2012)

    Article  Google Scholar 

  11. Singh, A., Surdi, H., Nikesh, V.V., Prabhu, S.S., Dohler, G.H.: Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes. AIP Adv. 3, 122106 (2013)

    Article  Google Scholar 

  12. Zolfagharloo Koohi, M., Neshat, M.: Evaluation of graphene-based THz photoconductive antennas. Sci. Iran. 23, 1299–1305 (2015)

    Google Scholar 

  13. Khiabani, N., Huang, Y., Garcia, L.E., Shen, Y., Lavado, A.: A novel sub-THz photomixer with nano trapezoidal electrodes. IEEE Trans. Terahertz Sci. Technol. 4, 501–508 (2014)

    Article  Google Scholar 

  14. Nazeri, M., Sajedi, A.: Change of THz antenna spectrum when surrounding dielectric alters. Optik 183, 650–655 (2019)

    Article  Google Scholar 

  15. Tani, M., Matsuura, S., Sakai, K., Nakashima, S.: Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl. Opt. 36, 7853–7859 (1997)

    Article  Google Scholar 

  16. Duvillaret, L., Garet, F., Roux, J.-F., Coutaz, J.-L.: Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas. IEEE J. Sel. Quantum Electron. 7, 615–623 (2001)

    Article  Google Scholar 

  17. Veselago, V.G.: The electrodynamics of substances with simultaneously negative value of epsilon and mu. Sov. Phys. Usp. 10(4), 509–514 (1968)

    Article  Google Scholar 

  18. Balmaz, P., Martin, O.: Electromagnetic resonances in individual and coupled split-ring resonators. J. Appl. Phys. 92, 2929 (2002)

    Article  Google Scholar 

  19. Smith, D.R., Vier, D.C., Koschny, Th, Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005)

    Article  Google Scholar 

  20. Maier, S.A.: Plasmonics: fundamentals and applications. Springer, New York (2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Nazeri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, A., Nazeri, M. & Sajedi Bidgoli, A. Enhancement of the frequency peak of terahertz photoconductive antennas using metamaterial (MTM) superstrate structures. J Comput Electron 19, 451–456 (2020). https://doi.org/10.1007/s10825-019-01407-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01407-2

Keywords

Navigation