Skip to main content
Log in

RF analysis and noise characterization of junctionless nanowire FETs by a Boltzmann transport equation solver

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The junctionless nanowire field-effect transistor (JN-FET) stands out among the most promising architectures for future MOSFETs. While a fair amount of the published literature has focused on the static performance of JN-FETs, detailed numerical investigation of their RF small-signal and noise behavior on the device level still lacks. This paper reports the ac and noise characteristics of JN-FETs with different gate lengths and shows that due to the improved electrostatic control and better immunity to short-channel effects, several key quantities such as the drain/gate excess noise factors and correlation coefficient demonstrate classical long-channel behavior for channel lengths as small as 16 nm. The results are obtained using an in-house simulation tool, which provides the deterministic and self-consistent solution of the multi-subband Poisson, Schrödinger, and Boltzmann equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.-P.: Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5), 0535111–0535112 (2009)

    Google Scholar 

  2. Lee, C.-W., Borne, A., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.-P.: High-temperature performance of silicon junctionless MOSFETs. IEEE Trans. Electron. Devices 57(3), 620–625 (2010)

    Article  Google Scholar 

  3. Doria, R.T., Pavanello, M.A., Trevisoli, R., de Souza, M.: Junctionless multiple-gate transistor for analog applications. IEEE Trans. Electron. Devices 58(8), 2511–2519 (2011)

    Article  Google Scholar 

  4. Aldegunde, M., Martinez, A., Barker, J.R.: Study of discrete doping-induced variability in junctionless nanowire MOSFETs using dissipative quantum transport simulations. IEEE Electron. Device Lett. 33(2), 194–196 (2012)

    Article  Google Scholar 

  5. Georgiev, V.P., Mirza, M.M., Dochioiu, A.-I., Adamu-Lema, F., Amoroso, S.M., Towie, E., Riddet, C., MacLaren, D.A., Asenov, A., Paul, D.J.: Experimental and simulation study of silicon nanowire transistors using heavily doped channels. IEEE Trans. Nanotechnol. 16(5), 727–735 (2017)

    Article  Google Scholar 

  6. Sahay, S., Kumar, M.J.: Diameter dependence of leakage current in nanowire junctionless field effect transistors. IEEE Trans. Electron. Devices 64(3), 1330–1335 (2017)

    Article  Google Scholar 

  7. Lou, H., Zhang, L., Zhu, Y., Lin, X., Yang, S., He, J., Chan, M.: A junctionless nanowire transistor with a dual-material gate. IEEE Trans. Electron. Devices 59(7), 1829–1836 (2012)

    Article  Google Scholar 

  8. Cho, S., Kim, K.R., Park, B.-G., Kang, I.M.: RF performance and small-signal parameter extraction of junctionless silicon nanowire transistors. IEEE Trans. Electron. Devices 58(5), 1388–1396 (2011)

    Article  Google Scholar 

  9. Shin, S., Kang, I.M., Kim, K.R.: Extraction method for substrate-related components of vertical junctionless silicon nanowire field-effect transistors and its verification on radio frequency characteristics. Jpn. J. Appl. Phys. 51(6S), 06FE20 (2012)

    Article  Google Scholar 

  10. Nekovee, M., Geurts, B.J., Boots, H.M.J., Schuurmans, M.F.H.: Failure of extended-moment-equation approaches to describe ballistic transport in submicrometer structures. Phys. Rev. B 45(12), 6643–6651 (1992)

    Article  Google Scholar 

  11. Shur, M.S.: Low ballistic mobility in submicron HEMTs. IEEE Electron. Device Lett. 23(9), 511–513 (2002)

    Article  Google Scholar 

  12. Jungemann, C., Grasser, T., Neinhüs, B., Meinerzhagen, B.: Failure of moments-based transport models in nanoscale devices near equilibrium. IEEE Trans. Electron. Devices 52(11), 2404–2408 (2005)

    Article  Google Scholar 

  13. Palestri, P., Eminente, S., Esseni, D., Fiegna, C., Sangiorgi, E., Selmi, L.: An improved semi-classical Monte-Carlo approach for nano-scale MOSFET simulation. Solid-State Electron. 49, 727–732 (2005)

    Article  Google Scholar 

  14. Lucci, L., Palestri, P., Esseni, D., Bergagnini, L., Selmi, L.: Multisubband Monte Carlo study of transport, quantization, and electron-gas degeneration in ultrathin SOI n-MOSFETs. IEEE Trans. Electron. Devices 54, 1156–1164 (2007)

    Article  Google Scholar 

  15. Ghetti, A., Carnevale, G., Rideau, D.: Coupled mechanical and 3-D Monte Carlo simulation of silicon nanowire MOSFETs. IEEE Trans. Electron. Devices 6(6), 659–666 (2007)

    Google Scholar 

  16. Ramayya, E.B., Knezevic, I.: Self-consistent Poisson–Schrödinger–Monte Carlo solver: electron mobility in silicon nanowires. J. Comput. Electron. 9(3), 206–210 (2010)

    Article  Google Scholar 

  17. Ryu, H.: A multi-subband Monte Carlo study on dominance of scattering mechanisms over carrier transport in sub-10-nm Si nanowire FETs. Nanoscale Res. Lett. 11(1), 1–9 (2016)

    Article  MathSciNet  Google Scholar 

  18. Noei, M., Jungemann, C.: Microscopic simulation of RF noise in junctionless nanowire transistors. J. Comput. Electron. 17(5), 986–993 (2018)

    Article  Google Scholar 

  19. Ruić, D., Jungemann, C.: Numerical aspects of noise simulation in MOSFETs by a Langevin–Boltzmann solver. J. Comput. Electron. 14(1), 21–36 (2015)

    Article  Google Scholar 

  20. Varga, R .S.: Matrix Iterative Analysis. Series in Automatic Computation. Prentice-Hall, New Jersey (1962)

    MATH  Google Scholar 

  21. Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79, 115112 (2009)

    Article  Google Scholar 

  22. Gnudi, A., Ventura, D., Baccarani, G., Odeh, F.: Two-dimensional MOSFET simulation by means of a multidimensional spherical harmonics expansion of the Boltzmann transport equation. Solid-State Electron. 36(4), 575–581 (1993)

    Article  Google Scholar 

  23. Hong, S.-M., Pham, A.T., Jungemann, C.: Deterministic Solvers for the Boltzmann Transport Equation. Computational Microelectronics. Springer, Wien, New York (2011)

    Book  Google Scholar 

  24. Esseni, D., Palestri, P., Selmi, L.: Nanoscale MOS Transistors: Semi-classical Transport and Applications. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  25. Kranti, A., Yan, R., Lee, C.W., Ferain, I., Yu, R., Akhavan, N.D., Razavi, P., Colinge, J.: Junctionless nanowire transistor (JNT): properties and design guidelines. In: 2010 Proceedings of the European Solid-State Device Research Conference (ESSDERC), (2010)

  26. Sorée, B., Magnus, W., Vandenberghe, W.: Low-field mobility in ultrathin silicon nanowire junctionless transistors. Appl. Phys. Lett. 99, 233509 (2011)

    Article  Google Scholar 

  27. Jin, S., Fischetti, M.V., Tang, T.-W.: Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric screening, and band nonparabolicity. J. Appl. Phys. 102, 083715 (2007)

    Article  Google Scholar 

  28. Shankar, R.: Principles of Quantum Mechanics. Springer, New York (1994)

    Book  Google Scholar 

  29. Bonani, F., Ghoine, G., Pinto, M.R., Smith, R.K.: A novel implementation of noise analysis in general-purpose PDE-based semiconductor device simulators. In: IEEE IEDM Technical Digest, pp. 777–780, (1995)

  30. Bonani, F., Pinto, M.R., Smith, R.K., Ghione, G.: An efficient approach to multi-dimensional impedance field noise simulation of bipolar devices. In: Proceedings of ICNF, vol. 13, Vilnius, (1995)

  31. Mason, S.: Power gain in feedback amplifier. Trans. IRE Prof. Group Circuit Theory 1, 20–25 (1952)

    Google Scholar 

  32. Yu, T.-H., Hsu, E., Liu, C.-W., Colinge, J.-P., Sheu, Y.-M., Wu, J., Diaz, C.: Electrostatics and ballistic transport studies in junctionless nanowire transistors. In: Proceedings of SISPAD, pp. 85–88, (2013)

  33. Carson, R.S.: High-Frequency Amplifiers. Wiley, New York (1982)

    Google Scholar 

  34. Scholten, A.J., Tiemeijer, L.F., van Langevelde, R., Havens, R.J., Venezia, V.C., van Duijnhoven, A.T.A.Z., Neinhüs, B., Jungemann, C., Klaassen, D.B.M.: Compact modeling of drain and gate current noise for RF CMOS. In: IEEE IEDM Technical Digest, pp. 129–132, (2002)

  35. van der Ziel, A.: Noise in Solid State Devices and Circuits. Wiley, New Jersey (1986)

    Google Scholar 

  36. Jungemann, C., Neinhüs, B., Nguyen, C.D., Scholten, A.J., Tiemeijer, L.F., Meinerzhagen, B.: Numerical modeling of RF noise in scaled MOS devices. Solid-State Electron. 50, 10–17 (2006)

    Article  Google Scholar 

  37. Betti, A., Fiori, G., Iannaccone, G.: Shot noise suppression in quasi-one-dimensional field-effect transistors. IEEE Trans. Electron. Devices 56(9), 2137–2143 (2009)

    Article  Google Scholar 

  38. Navid, R., Dutton, R.W.: The physical phenomena responsible for excess noise in short-channel MOS devices. In: IEEE IEDM Technical Digest, pp. 75–78, (2002)

  39. Scholten, A.J., Tiemeijer, L.F., van Langevelde, R., Havens, R.J., van Duijnhoven, A.T.A.Z., Venezia, V.C.: Noise modeling for RF CMOS circuit simulation. IEEE Trans. Electron. Devices 50(3), 618–632 (2003)

    Article  Google Scholar 

Download references

Funding

Funding was provided by RWTH Aachen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar Noei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noei, M., Jungemann, C. RF analysis and noise characterization of junctionless nanowire FETs by a Boltzmann transport equation solver. J Comput Electron 18, 1347–1353 (2019). https://doi.org/10.1007/s10825-019-01381-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01381-9

Keywords

Navigation