Skip to main content

Advertisement

Log in

Spatial-frequency coding metasurfaces to regulate energy radiation of terahertz waves

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Conventional coding metasurfaces only consider the different phase responses and encode the spatial-domain parameter, whereas the phase sensitivity of the frequency-domain parameter is not considered. When traditional digital metasurfaces are used to control terahertz waves, they have fixed functions once the coding sequence has been determined. To address this shortcoming, a windmill-shaped structure is adopted herein to construct spatial-frequency coding metasurfaces that take into account not only the initial phase response parameter but also the frequency-domain parameter in the terahertz band. Using such a metasurface, the energy radiation of terahertz wave can be manipulated by only changing the working frequency without redesigning the structure of the coding metasurface. The physical phenomena are confirmed by numerical simulations with 1-bit and 2-bit periodic as well as nonperiodic spatial-frequency coding metasurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Siegel, P.H.: Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004)

    Article  Google Scholar 

  2. Federici, J.F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., Zimdars, D.: THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 20(7), s266–s280 (2005)

    Article  Google Scholar 

  3. Tonouchi, M.: Cutting-edge THz technology. Nat. Photonics 1(2), 97–105 (2007)

    Article  Google Scholar 

  4. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184 (2000)

    Article  Google Scholar 

  5. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  Google Scholar 

  6. Li, Z., Yao, K., Xia, F., Shen, S., Tian, J., Liu, Y.: Graphene plasmonic metasurfaces to steer infrared light. Sci. Rep. 5, 12423 (2015)

    Article  Google Scholar 

  7. Su, Z., Zhao, Q., Song, K., Zhao, X., Yin, J.: Electrically tunable metasurface based on Mie-type dielectric resonators. Sci. Rep. 7, 43026 (2017)

    Article  Google Scholar 

  8. Zhang, Y., Feng, Y.J., Zhao, J.M., Jiang, T., Zhu, B.: Terahertz beam switching by electrical control of graphene-enabled tunable metasurface. Sci. Rep. 7, 14147 (2017)

    Article  Google Scholar 

  9. Hu, D., Moreno, G., Wang, X.K., He, J.W., Chahadih, A., Xie, Z.W., Wang, B., Akalin, T., Zhang, Y.: Dispersion characteristic of ultrathin terahertz planar lenses based on metasurface. Opt. Commun. 322, 164–168 (2014)

    Article  Google Scholar 

  10. Wang, B.X., Zhai, X., Wang, G.Z., Huang, W.Q., Wang, L.L.: Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics J. 7(1), 1–8 (2015)

    Google Scholar 

  11. Chen, H.T., Padilla, W.J., Cich, M.J., Azad, A.K., Averitt, R.D., Taylor, A.J.: A metamaterial solid-state terahertz phase modulator. Nat. Photonics 3(3), 148–151 (2009)

    Article  Google Scholar 

  12. Unlu, M., Hashemi, M.R., Berry, C.W., Li, S., Yang, S.H., Jarrahi, M.: Switchable scattering meta-surfaces for broadband terahertz modulation. Sci. Rep. 4, 5708 (2014)

    Article  Google Scholar 

  13. Hussain, N., Parka, I.: Design of a wide-gain-bandwidth metasurface antenna at terahertz frequency. AIP Adv. 7, 055313 (2017)

    Article  Google Scholar 

  14. Cui, T.J., Qi, M.Q., Wan, X., Zhao, J., Cheng, Q.: Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014)

    Article  Google Scholar 

  15. Liang, L.J., Wei, M.G., Yan, X., Wei, D.Q., Liang, D.C., Han, J.G., Ding, X., Zhang, G.Y., Yao, J.Q.: Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies. Sci. Rep. 6, 39252 (2016)

    Article  Google Scholar 

  16. Li, J.S., Zhao, Z.J., Yao, J.Q.: Flexible manipulation of terahertz wave reflection using polarization insensitive coding metasurfaces. Opt. Express 25(24), 29983–29992 (2017)

    Article  Google Scholar 

  17. Dong, D.S., Yang, J., Cheng, Q., Zhao, J., Gao, L.H., Ma, S.J., Liu, S., Chen, H.B., He, Q., Liu, W.W., Fang, Z.Y., Zhou, L., Cui, T.J.: Terahertz broadband low-reflection metasurface by controlling phase distributions. Adv. Opt. Mater. 3, 1405–1410 (2015)

    Article  Google Scholar 

  18. Wu, H.T., Liu, S., Wan, X., Zhang, L., Wang, D., Li, L.L., Cui, T.J.: Controlling energy radiations of electromagnetic waves via frequency coding metamaterials. Adv. Sci. 4(9), 1700098 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 61871355, 61831012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiu-Sheng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, RH., Li, JS. & Yao, JQ. Spatial-frequency coding metasurfaces to regulate energy radiation of terahertz waves. J Comput Electron 18, 712–721 (2019). https://doi.org/10.1007/s10825-019-01330-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01330-6

Keywords

Navigation