Skip to main content

Advertisement

Log in

Theoretical investigation of the structural, electronic and thermodynamic properties of cubic and orthorhombic XZrS3 (X = Ba,Sr,Ca) compounds

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The structural, electronic and thermodynamic properties of XZrS3 (X = Ba,Sr,Ca) compounds with orthorhombic Pbnm and cubic Pm-3m phases have been investigated and reported. The calculations have been performed using various density functionals within the generalized gradient approximation. The obtained lattice parameters for the Pnma phase reveal very good agreement with experiment. The computed electronic band structures show that in the cubic phase the material of interest is an indirect band-gap (RГ) semiconductor, whereas it is a direct band gap (ГГ) in the orthorhombic phase. The semiconducting XZrS3 (X = Ba,Sr,Ca) compounds are found to satisfy the stability criteria against volume change. Based on the quasi-harmonic Debye model, the thermodynamic properties of the material in question have been predicted taking into account the lattice vibrations. The variation of the lattice constant, bulk modulus, heat capacity, Debye temperature and thermal expansion coefficient as a function of pressure in the range 0–30 GPa and temperatures of 0–1500 K has been computed. Our findings show that external effects such as temperature and pressure are highly effective in tuning some of the macroscopic properties of the compounds under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Soukiassian, A., Tian, W., Vaithyanathan, V., Haeni, J.H., Chen, L.Q., Xi, X.X., Schlom, D.G., Tenne, D.A., Sun, H.P., Pan, X.Q., Choi, K.J., Eom, C.B., Li, Y.L., Jia, Q.X., Constantin, C., Feenstra, R.M., Bernhagen, M., Reiche, P., Uecker, R.: Growth of nanoscale BaTiO3/SrTiO3 superlattices by molecular-beam epitaxy. J. Mater. Res. 23, 1417–1432 (2008)

    Article  Google Scholar 

  2. Jang, H.W., Baek, S.H., Ortiz, D., Folkman, C.M., Eom, C.B., Chu, Y.H., Shafer, P., Ramesh, R., Vaithyanathan, V., Schlom, D.G.: Epitaxial (001) BiFeO3 membranes with substantially reduced fatigue and leakage. Appl. Phys. Lett. 92, 062910–062913 (2008)

    Article  Google Scholar 

  3. Wolframand, T., Ellialtioglu, S.: Electronic and Optical Properties of d-Band Perovskites, pp. 280–303. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  4. Wu, M., Fang, L., Liu, L., Li, G., Elouadi, B.: Dielectric and ferroelectric properties of (1 − x)BiFeO3−xBi0.5Na0.5TiO3. Solid Solution Ferroelectr. 478(1), 18–25 (2015)

    Article  Google Scholar 

  5. Chen, P., Podraza, N.J., Xu, X.S., Melville, A., Vlahos, E., Gopalan, V., Ramesh, R., Schlom, D.G., Musfeldt, J.L.: Optical properties of quasi-tetragonal thin films. Appl. Phys. Lett. 96, 131907 (2010)

    Article  Google Scholar 

  6. Chong, N.S., Suen, N.T., Chou, T.L., Tang, H.Y.: Electrocrystallization and characterization of polymorphic forms of barium metaplumbate. Cryst. Growth Des 8(5), 1779–1782 (2008)

    Article  Google Scholar 

  7. Christen, H.-M., Boatner, L.A., Budai, J.D., Chisholm, M.F., Gea, L.A., Norton, D.P., Gerber, C., Urbanik, M.: Semiconducting epitaxial films of metastable SrRu0.5Sn0.5O3 grown by pulsed laser deposition. Appl. Phys. Lett. 70, 2147 (1997)

    Article  Google Scholar 

  8. Balachandran, U., Ma, B., Maiya, P.S., Mievillea, R.L., Duseka, J.T., Piccioloa, J.J., Guana, J., Dorrisa, S.E., Liub, M.: Development of mixed-conducting oxides for gas separation. Solid State Ion. 108, 363–370 (1998)

    Article  Google Scholar 

  9. Kawada, T., Sase, M., Kudo, M., Yashiro, K., Sato, K., Mizusaki, J., Sakai, N., Horita, T., Yamaji, K., Yokokawa, H.: Microscopic observation of oxygen reaction pathway on high temperature electrode materials. Solid State Ion. 177, 3081–3086 (2006)

    Article  Google Scholar 

  10. Hrovat, M., Katsarakis, N., Reichmann, K., Bernik, S., Kus̆c̆er, D., Holc, J.: Characterisation of LaNi1−xCoxO3 as a possible SOFC cathode material. Solid State Ion. 83(1–2), 99–105 (1996)

    Article  Google Scholar 

  11. Joshi, U.A., Jang, J.S., Borse, P.H., Lee, J.S.: Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl. Phys. Lett. 92, 242106 (2008)

    Article  Google Scholar 

  12. Ramasamy, P., Lim, D.-H., Kim, B., Lee, S.-H., Lee, M.-S., Lee, J.-S.: All- inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 52, 2067–2070 (2016)

    Article  Google Scholar 

  13. Slavney, A.H., Hu, T., Lindenberg, A.M., Karunadasa, H.I.: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138(7), 2138–2141 (2016)

    Article  Google Scholar 

  14. Huang, K., Feng, M., Goodenough, J.B.: Sol–gel synthesis of a new oxide-ion conductor sr- and mg-doped LaGaO3 perovskite. J. Am. Ceram. Soc. 79, 1100–1104 (1996)

    Article  Google Scholar 

  15. Iwahara, H., Esaka, T., Uchida, H., Maeda, N.: Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion. 3–4, 359–363 (1981)

    Article  Google Scholar 

  16. Uchida, H., Maeda, N., Iwahara, H.: Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures. Solid State Ion. 11(2), 117–124 (1983)

    Article  Google Scholar 

  17. Iwahara, H., Uchida, H., Ono, K., Ogaki, K.: Proton conduction in sintered oxides based on BaCeO3. J. Electrochem. Soc. 135(2), 529–533 (1988)

    Article  Google Scholar 

  18. Dimos, D., Mueller, C.: Perovskite thin films for high-frequency capacitor applications. Annu. Rev. Mater. Res. 28, 397–419 (1998)

    Google Scholar 

  19. Shaw, T., Trolier-McKinstry, S., McIntyre, P.: The properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci. 30, 263–298 (2000)

    Article  Google Scholar 

  20. Higuchi, Y., Tamura, H.: Recent progress on the dielectric properties of dielectric resonator materials with their applications from microwave to optical frequencies. J. Eur. Ceram. Soc. 23(14), 2683–2688 (2003)

    Article  Google Scholar 

  21. Jonker, G.H.: Influence of grain boundary on magnetoresistance in hole doped manganites La0.7Ca0.3MnO3, La0.7Sr0.3MnO3 and (La0.75Y0.25)0.7Sr0.3MnO3. Physica 22(8), 707–722 (1956)

    Article  Google Scholar 

  22. De Teresa, J., Ibarra, M., Algarabel, P., Ritter, C., Marquina, C., Blasco, J., et al.: Evidence for magnetic polarons in the magnetoresistive perovskites. Nature 386(6622), 256–259 (1997)

    Article  Google Scholar 

  23. Moritomo, Y., Asamitsu, A., Kuwahara, H., Tokura, Y.: Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature 380(6570), 141–144 (1996)

    Article  Google Scholar 

  24. Moret, M.P., Devillers, M., Worhoff, K., Larsen, P.: Optical properties of PbTiO3, PbZrxTi1−xO3, and PbZrO3 films deposited by metalorganic chemical vapor on SrTiO3. J. Appl. Phys. 92(1), 468–474 (2002)

    Article  Google Scholar 

  25. Jona, F., Shirane, G., Pepinsky, R.: Optical study of PbZrO3 and NaNbO3 single crystals. Phys. Rev. 97(6), 1584–1590 (1955)

    Article  Google Scholar 

  26. Weber, M.J., Bass, M., Demars, G.: Laser action and spectroscopic properties of Er3+ in YAlO3. J. Appl. Phys. 42(1), 301 (1971)

    Article  Google Scholar 

  27. Rao, K., Yoon, K.: Review of electrooptic and ferroelectric properties of barium sodium niobate single crystals. J. Mater. Sci. 38(3), 391–400 (2003)

    Article  Google Scholar 

  28. Ihringer, J., Maichle, J., Prandl, W., Hewat, A., Wroblewski, T.: Crystal structure of the ceramic superconductor BaPb0.75Bi0.25O3. Z. Phys. B Condens. Matter 82(2), 171–176 (1991)

    Article  Google Scholar 

  29. Cava, R.J., Batlogg, B., Krajewski, J.J., Farrow, R., Rupp, L.W., White, A.E., et al.: Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite. Nature 332(6167), 814–816 (1988)

    Article  Google Scholar 

  30. Sampathkumar, T., Srinivasan, S., Nagarajan, T., Balachandran, U.: Properties of YBa2Cu3O7-δ-BaBiO3 composite superconductors. Appl. Superconduct. 2(1), 29–34 (1994)

    Article  Google Scholar 

  31. Frederikse, H.P.R., Thurber, W.R., Hosler, W.R.: Electronic transport in strontium titanate. Phys. Rev. 134, 442 (1964)

    Article  Google Scholar 

  32. Samantaray, C.B., Sim, H., Hwang, H.: Electronic structure and optical properties of barium strontium titanate (BaxSr1−xTiO3) using first-principles method. Phys. B Condens. Matter 351(1–2), 158–162 (2004)

    Article  Google Scholar 

  33. Bednorz, J.G., Müller, K.A.: Sr1−xCaxTiO3: an XY quantum ferroelectric with transition to randomness. Phys. Rev. Lett. 52, 2289 (1984)

    Article  Google Scholar 

  34. Berri, S., Maouche, D., Ibrir, M., Bakri, B.: Electronic structure and magnetic properties of the perovskite cerium manganese oxide from ab initio calculations. Mater. Sci. Semicond. Process. 26, 199–204 (2014)

    Article  Google Scholar 

  35. Raza urrehman Hashmi, M., Zafar, M., Shakil, M., Sattar, A., Ahmed, S., Ahmad, S.A.: First-principles calculation of the structural, electronic, and magnetic properties of cubic perovskite RbXF3 (X = Mn, V Co, Fe). Chin. Phys. B 25(11), 117401 (2016)

    Article  Google Scholar 

  36. Khandy, S.A., Gupta, D.C.: Structural, elastic and magneto-electronic properties of half-metallic BaNpO3 perovskite. Mater. Chem. Phys. 198, 380–385 (2017)

    Article  Google Scholar 

  37. Berri, S.: Search for new half-metallic ferromagnets in quaternary diamond-like compounds I-II2–III–VI4 and I2–II–IV–VI4 (I = Cu; II = Mn, Fe, Co; III = In; IV = Ge, Sn; VI = S, Se, Te). J. Superconduct. Novel Magn. 31(6), 1941–1947 (2018)

    Article  Google Scholar 

  38. Berri, S.: Half-metallic ferromagnetism in Li6VCl8, Li6MnCl8, Li6CoCl8 and Li6FeCl8 from first principles. J. Superconduct. Novel Magn. 29(9), 2381–2386 (2016)

    Article  Google Scholar 

  39. Berri, S., Kouriche, A., Maouche, D., Zerarga, F., Attallah, M.: Ab initio study of electronic structure and magnetic properties in ferromagnetic Sr1−x(Mn, Cr)xO alloys. Mater. Sci. Semiconduct. Process. 38, 101–106 (2015)

    Article  Google Scholar 

  40. Berber, M., Doumi, B., Mokaddem, A., Mogulkoc, Y., Sayede, A., Tadjer, A.: Investigation of electronic structure and half-metallic ferromagnetic behavior with large half-metallic gap in Sr1−xVxO. J. Comput. Electron. 13, 542–547 (2017)

    Article  Google Scholar 

  41. Berri, S.: First-principles study on half-metallic properties of the Sr2GdReO6 double perovskite. J. Magn. Magn. Mater. 385, 124–128 (2015)

    Article  Google Scholar 

  42. Wang, X., Khachai, H., Khenata, R., Yuan, H., Wang, L., Wang, W., Bouhemadou, A., Hao, L., Dai, X., Guo, R., Liu, G., Cheng, Z.: Structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the quaternary Heusler compound FeCrRuSi: a first-principles study. Sci. Rep. 7(1), 16183 (2017)

    Article  Google Scholar 

  43. Brehm, J.A., Bennett, J.W., Schoenberg, M.R., Rappe, I., Grinberg, A.M.: The structural diversity of ABS3 compounds with d 0 electronic configuration for the B-cation. J. Chem. Phys. 140, 224703 (2014)

    Article  Google Scholar 

  44. Körbel, S.K.X., Marques, M.A.L., Botti, S.: Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. J. Mater. Chem. C 4, 3157–3167 (2016)

    Article  Google Scholar 

  45. Kuhar, K., Crovetto, A., Pandey, M., Thygesen, K., Seger, B., Vesborg, P.C.K., Hansen, O., Chorkendorff, I., Jacobsen, K.W.: Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS3. Energy Environ. Sci. 10, 2579 (2017)

    Article  Google Scholar 

  46. Ju, M.-G., Dai, J., Ma, L., Zeng, X.C.: Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv. Energy Mater. 7, 1700216 (2017)

    Article  Google Scholar 

  47. Nijamudheen, A., Akimov, A.V.: Criticality of symmetry in rational design of chalcogenide perovskites. J. Phys. Chem. Lett. 9, 248–257 (2018)

    Article  Google Scholar 

  48. Sun, Y.-Y., Agiorgousis, M.L., Zhang, P., Zhang, S.: Chalcogenide perovskites for photovoltaics. Nano Lett. 15, 581–585 (2015)

    Article  Google Scholar 

  49. Hong, F., Saparov, B., Meng, W., Xiao, Z., Mitzi, D.B., Yan, Y.: Viability of lead-free perovskites with mixed chalcogen and halogen anions for photovoltaic applications. J. Phys. Chem. C 120(12), 6435–6441 (2016)

    Article  Google Scholar 

  50. Kuhar, K., Pandey, M., Thygesen, K.S., Jacobsen, K.W.: High-throughput computational assessment of previously synthesized semiconductors for photovoltaic and photoelectrochemical devices. ACS Energy Lett. 3, 436–446 (2018)

    Article  Google Scholar 

  51. Enkovaara, J., Rostgaard, C., Mortensen, J.J., Chen, J., Dułak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H.A., et al.: Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010)

    Article  Google Scholar 

  52. Lelieveld, R., Ijdo, D.J.W.: Sulphides with the GdFeO3 structure. Acta Cryst. B 36, 2223–2226 (1980)

    Article  Google Scholar 

  53. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K, An Augmented Plane Wave +Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz, Technische Universität, Wien (2001). ISBN 3-9501031-1-2

    Google Scholar 

  54. Perdew, J.P., Burke, S., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  55. Engel, E., Vosko, S.H.: Generalized gradient approximation for the relativistic exchange-only energy functional. Phys. Rev. B 47, 1316 (1993)

    Article  Google Scholar 

  56. Loschen, C., Carrasco, J., Neyman, K.M., Illas, F.: First-principles LDA + U and GGA + U study of cerium oxides: dependence on the effective U parameter. Phys. Rev. B 75, 035115 (2007)

    Article  Google Scholar 

  57. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990)

    Article  Google Scholar 

  58. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

    Article  Google Scholar 

  59. Wu, Z., Cohen, R.E.: More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006)

    Article  Google Scholar 

  60. Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002)

    Article  Google Scholar 

  61. Fischer, T.H., Almlof, J.: General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768 (1992)

    Article  Google Scholar 

  62. Blanco, M.A., Francisco, E., Luaňa, V.: GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 7 (2004)

    Article  MATH  Google Scholar 

  63. Blanco, A., Martίn Pendàs, A., Francisco, E., Recio, J.M., Franco, R.: Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3. J. Mol. Struct. Theochem. 368, 45 (1996)

    Article  Google Scholar 

  64. Flãrez, M., Recio, J.M., Francisco, E., Blanco, M.A., Martìn Pendás, A.: First-principles study of the rocksalt–cesium chloride relative phase stability in alkali halides. Phys. Rev. B 66, 144112 (2002)

    Article  Google Scholar 

  65. Francisco, E., Recio, J.M., Blanco, M.A., Martín Pendás, A., Costales, A.: Quantum-mechanical study of thermodynamic and bonding properties of MgF2. J. Phys. Chem. A 102, 1595–1601 (1998)

    Article  Google Scholar 

  66. Francisco, E., Blanco, M.A., Sanjurjo, G.: Atomistic simulation of SrF2 polymorphs. Phys. Rev. B 63, 94107 (2001)

    Article  Google Scholar 

  67. Poirier, J.P.: Introduction to the Physics of the Earth’s Interior, p. 39. Cambridge University Press, Oxford (2000)

    Book  Google Scholar 

  68. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond. A 65, 49 (1952)

    Article  Google Scholar 

  69. Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  70. Perera, S., Hui, H., Zhao, C., Xue, H., Sun, F., Gross, C.D.N., Milleville, C., Xu, X., Watson, D.F., Weinstein, B., Sun, Y.-Y., Zhang, S., Zeng, H.: Chalcogenide perovskites—an emerging class of ionic semiconductors. Nano Energy 22, 129–135 (2016)

    Article  Google Scholar 

  71. W. Pies and A. Weiss. Landolt-Börnstein. Numerical data and functional relationships in science and technology. Group III. Crystal and solid state physics. Crystal structure data of inorganic compounds. Acta Crystallogr. Sect. A Cryst. Phys. Differ. Theor. Gen. Crystallogr. 271–272 (1975)

  72. Swarnkar, A., Mir, W.J., Chakraborty, R., Jagadeeswararao, M., Sheikh, T., Nag, A.: Are chalcogenide perovskites an emerging class of semiconductors for optoelectronic properties and solar cell? Chem. Mater 31(3), 565–575 (2019)

    Article  Google Scholar 

  73. Evarestov, R.A.: Hybrid density functional theory LCAO calculations on phonons in Ba(Ti, Zr, Hf)3. Phys. Rev. B Condens. Matter Mater. Phys. 83, 014105 (2011)

    Article  Google Scholar 

  74. Eglitis, R.I.: Ab initio calculations of the atomic and electronic structure of BaZrO3 (111) surfaces. Solid State Ion. 230, 43–47 (2013)

    Article  Google Scholar 

  75. Bjørheim, T.S., Arrigoni, M., Gryaznov, D., Kotomin, E., Maier, J.: Thermodynamic properties of neutral and charged oxygen vacancies in BaZrO3 based on first principles phonon calculations. Phys. Chem. Chem. Phys. 17, 20765 (2015)

    Article  Google Scholar 

  76. Bilić, A., Gale, J.D.: Ground state structure of BaZrO3: a comparative first-principles study. Phys. Rev. B Condens. Matter 79, 174107 (2009)

    Article  Google Scholar 

  77. Meng, W., Saparov, B., Hong, F., Wang, J., Mitzi, D.B., Yan, Y.: Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem. Mater. 28(3), 821–829 (2016)

    Article  Google Scholar 

  78. Polfus, J.M., Norby, T., Bredesen, R.: Protons in oxysulfides, oxysulfates, and sulfides: a first-principles study of La2O2S, La2O2SO4, SrZrS3, and BaZrS3. J. Phys. Chem. C 119, 23875–23882 (2015)

    Article  Google Scholar 

  79. Wyckoff, R.: Inorganic Compounds RXn, RnMX2, RnMX3. Crystal Structures, vol. 2. R.E. Krieger Pub. Co., Malabar (1982)

    Google Scholar 

  80. Lopez-Garcia, A., Alonso, R., Falabella, M., Echeverría, G.: The effect of oxygen vacancies in Ca1−xSrxHfO3. Ferroelectrics 396(1), 37–48 (2010)

    Article  Google Scholar 

  81. Brik, M., Ma, C.-G., Krasnenko, V.: First-principles calculations of the structural and electronic properties of the cubic CaZrO3 (001) surfaces. Surf. Sci. 608, 146–153 (2013)

    Article  Google Scholar 

  82. Moreira, R.L., Dias, A.: Comment on “Prediction of lattice constant in cubic perovskites”. J. Phys. Chem. Solids 68, 1617 (2007)

    Article  Google Scholar 

  83. Sandeep, D.P., Rai, A., Shankar, M.P., Ghimire, R., Khenata, S., Omran, B., Syrotyuk, S.V., Thapa, R.K.: Investigation of the structural, electronic and optical properties of the cubic RbMF3 perovskites (M = Be, Mg, Ca, Sr and Ba) using modified Becke-Johnson exchange potential. Mater. Chem. Phys. 192, 282–290 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadi Berri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oumertem, M., Maouche, D., Berri, S. et al. Theoretical investigation of the structural, electronic and thermodynamic properties of cubic and orthorhombic XZrS3 (X = Ba,Sr,Ca) compounds. J Comput Electron 18, 415–427 (2019). https://doi.org/10.1007/s10825-019-01317-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01317-3

Keywords

Navigation