Skip to main content
Log in

Magnetic field sensor based on a magnetic-fluid-infiltrated photonic crystal L4 nanocavity and broadband W1 waveguide

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Based on numerical simulations, we propose a new type of magnetic sensor based on a two-dimensional (2D) photonic-crystal nanocavity infiltrated by a magnetic fluid and a broadband W1 waveguide. The defect length and the diameter of the holes surrounding the L4 nanocavity are optimized, yielding a structure with a quality factor of 8655.8. Magnetic fluids with different magnetic nanoparticle volume fraction concentrations and various refractive indices are infiltrated into special holes. Magnetic field sensing is realized based on the change in the refractive index of the magnetic fluid with the external magnetic field strength, resulting in a shift of the resonant wavelength. The magnetic field sensitivity and full-width at half-maximum increase with the number of infiltrated air holes. A refractive index sensitivity of 146.97 nm/refractive index unit (RIU) is obtained for the structure with 12 infiltrated air holes, with an optimum figure of merit indicating the good performance of this magnetic field sensor structure. These distinguished features and the excellent tunable refractive index property of the magnetic fluid make the designed device suitable for application in magnetic field sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fedyanin, A.A., Aktsipetrov, O.A., Kobayashi, D., Nishimura, K., Uchida, H., Inoue, M.: Enhanced Faraday and nonlinear magneto-optical Kerr effects in magnetophotonic crystals. J. Magn. Magn. Mater. 282(1–3), 256 (2004)

    Google Scholar 

  2. Fu, J.X., Liu, R.J., Li, Z.Y.: Experimental demonstration of tunable gyromagnetic photonic crystals controlled by dc magnetic fields. Europhys. Lett. 89(6), 64003 (2010)

    Google Scholar 

  3. Benelarbi, D., Bouchemat, T., Bouchemat, M.: Study of photonic crystal microcavities coupled with waveguide for biosensing applications. Opt. Quantum Electron. 49(11), 347 (2017)

    Google Scholar 

  4. Arafa, S., Bouchemat, M., Bouchemat, T., Benmerkhi, A., Hocini, A.: Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection. Opt. Commun. 384, 93 (2017)

    Google Scholar 

  5. Ramanujam, N.R., Amiri, I.S., Taya, S.A., Olyaee, S., Udaiyakumar, R., Pandian, A.P., Wilson, K.S.J., Mahalakshmi, P., Yupapin, P.P.: Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal. Microsyst. Technol. 6, 1 (2018)

    Google Scholar 

  6. Shaheen, S.A., Taya, S.A.: Propagation of p-polarized light in photonic crystal for sensor application. Chin. J. Phys. 55(2), 571 (2017)

    Google Scholar 

  7. Taya, S.A., Shaheen, S.A.: Binary photonic crystal for refractometric applications (TE case). Indian J. Phys. 92(4), 519 (2017)

    Google Scholar 

  8. Taya, S.A., Shaheen, S.A., Alkanoo, A.A.: Photonic crystal as a refractometric sensor operated in reflection mode. Superlattices Microstruct. 101, 299 (2017)

    Google Scholar 

  9. El-amassi, D.M., Taya, S.A., Ramanujam, N.R., Vigneswaran, D., Udaiyakumar, R.: Extension of energy band gap in ternary photonic crystal using left-handed materials. Superlattices Microstruct. 120, 353 (2018)

    Google Scholar 

  10. Taya, S.A.: Ternary photonic crystal with left-handed material layer for refractometric application. Opto-Electron. Rev. 26(3), 236 (2018)

    Google Scholar 

  11. Deghdak, R., Bouchemat, M., Lahoubi, M., Pu, S., Bouchemat, T., Otmani, H.: Sensitive magnetic field sensor using 2D magnetic photonic crystal slab waveguide based on BIG/GGG structure. J. Comput. Electron. 16(2), 392 (2017)

    Google Scholar 

  12. Otmani, H., Bouchemat, M., Hocini, A., Boumaza, T.: Mode conversion in a magnetic photonic crystal waveguide. Phys. Scr. 89(6), 065501 (2014)

    Google Scholar 

  13. Gevorgyan, A.H.: On some optical properties of magnetic photonic crystals. J. Mod. Opt. 65(18), 1 (2018)

    MathSciNet  Google Scholar 

  14. Pu, S., Bai, X., Wang, L.: Temperature dependence of photonic crystals based on thermoresponsive magnetic fluids. J. Magn. Magn. Mater. 323(22), 2866 (2011)

    Google Scholar 

  15. Bai, X.K., Pu, S.L., Wang, L.W., Wang, X., Yu, G.J., Ji, H.Z.: Tunable magneto-optic modulation based on magnetically responsive nanostructured magnetic fluid. Chin. Phys. B 20(10), 107501 (2011)

    Google Scholar 

  16. Wu, J., Miao, Y., Song, B., Lin, W., Zhang, H., Zhang, K., Liu, B., Yao, J.: Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid. Appl. Phys. Lett. 104(25), 252402 (2014)

    Google Scholar 

  17. Chen, Y.F., Yang, S.Y., Tse, W.S., Horng, H.E., Hong, C.Y., Yang, H.C.: Thermal effect on the field-dependent refractive index of the magnetic fluid film. Appl. Phys. Lett. 82(20), 3481 (2003)

    Google Scholar 

  18. Masood, A., Tamaki, T., Ström, V., Borgenstam, A., Ågren, J., Rao, K.V.: A new class of materials for magneto-optical applications: transparent amorphous thin films of Fe–B–Nb and Fe–B–Nb–Y metallic glassy alloys. IEEE Trans. Magn. 50(4), 4004005 (2014)

    Google Scholar 

  19. Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36, R167 (2003)

    Google Scholar 

  20. Zahn, M., Science, C., Systems, E.: Magnetic fluid and nanoparticle applications to nanotechnology. J. Nanopart. Res. 3, 73 (2001)

    Google Scholar 

  21. Horng, H.E., Hong, C.-Y., Yang, S.Y., Yang, H.C.: Designing the refractive indices by using magnetic fluids. Appl. Phys. Lett. 82(15), 2434 (2003)

    Google Scholar 

  22. Zhao, Y., Wu, D., Lv, R.-Q., Ying, Y.: Tunable characteristics and mechanism analysis of the magnetic fluid refractive index with applied magnetic field. IEEE Trans. Magn. 50(8), 4600205 (2014)

    Google Scholar 

  23. Hong, C.Y., Yang, S.Y., Horng, H.E., Yang, H.C.: Control parameters for the tunable refractive index of magnetic fluid films. J. Appl. Phys. 94(6), 3849 (2003)

    Google Scholar 

  24. Chen, Y.F., Han, Q., Liu, T.G.: All-fiber optical modulator based on no-core fiber and magnetic fluid as cladding. Chin. Phys. B 24(1), 014214 (2015)

    Google Scholar 

  25. Lei, X., Chen, J., Shi, F., Chen, D., Ren, Z., Peng, B.: Magnetic field fiber sensor based on the magneto-birefringence effect of magnetic fluid. Opt. Commun. 374, 76 (2016)

    Google Scholar 

  26. Bai, X., Yuan, J., Gu, J., Wang, S., Zhao, Y., Pu, S., Zeng, X.: Magnetic field sensor using fiber ring cavity laser based on magnetic fluid. IEEE Photonics Technol. Lett. 28(2), 115 (2016)

    Google Scholar 

  27. Wei, F., Mallik, A.K., Liu, D., Wu, Q., Peng, G.-D., Farrell, G., Semenova, Y.: Magnetic field sensor based on a combination of a microfiber coupler covered with magnetic fluid and a Sagnac loop. Sci. Rep. 7(1), 4725 (2017)

    Google Scholar 

  28. Luo, L., Pu, S., Tang, J., Zeng, X., Lahoubi, M.: Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid. Appl. Phys. Lett. 106(19), 193507 (2015)

    Google Scholar 

  29. Pu, S., Mao, L., Yao, T., Gu, J., Lahoubi, M., Zeng, X.: Microfiber coupling structures for magnetic field sensing with enhanced sensitivity. IEEE Sens. J. 17(18), 5857 (2017)

    Google Scholar 

  30. Li, J., Wang, R., Wang, J., Zhang, B., Xu, Z., Wang, H.: Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers. Opt. Fiber Technol. 20(2), 100 (2014)

    Google Scholar 

  31. Chen, H., Li, S., Li, J., Fan, Z.: Magnetic field sensor based on magnetic fluid selectively infilling photonic crystal fibers. IEEE Photon. Technol. Lett. 27(7), 717 (2015)

    Google Scholar 

  32. Zhao, Y., Wu, D., Lv, R.-Q.: Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid. IEEE Photon. Technol. Lett. 27(1), 26 (2015)

    Google Scholar 

  33. Zu, P., Chiu Chan, C., Gong, T., Jin, Y., Chang Wong, W., Dong, X.: Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid. Appl. Phys. Lett. 101(24), 241118 (2012)

    Google Scholar 

  34. Otmani, H., Bouchemat, M., Bouchemat, T., Lahoubi, M., Pu, S., Deghdak, R.: Magneto-optical properties of magnetic photonic crystal fiber of terbium gallium garnet filled with magnetic fluid. Photon. Nanostruct. Fundam. Appl. 22, 24 (2016)

    Google Scholar 

  35. Otmani, H., Bouchemat, M., Bouchemat, T., Lahoubi, M., Wang, W., Pu, S.: Nonreciprocal TE–TM mode conversion based on photonic crystal fiber of air holes filled with magnetic fluid into a terbium gallium garnet fiber. IEEE Trans. Magn. 51(11), 4004604 (2015)

    Google Scholar 

  36. Zhao, Y., Zhang, Y.N., Lv, R.Q.: Simultaneous measurement of magnetic field and temperature based on magnetic fluid-infiltrated photonic crystal cavity. IEEE Trans. Instrum. Meas. 64(4), 1055 (2015)

    Google Scholar 

  37. Gangwar, R.K., Bhardwaj, V., Singh, V.K.: Magnetic field sensor based on selectively magnetic fluid infiltrated dual-core photonic crystal fiber. Opt. Eng. 55(2), 026111 (2016)

    Google Scholar 

  38. Rao, J., Pu, S., Yao, T., Su, D.: Ultrasensitive magnetic field sensing based on refractive-index-matched coupling. Sensors 17(7), 1590 (2017)

    Google Scholar 

  39. Ding, X.Z., Yang, H.Z., Qiao, X.G., Zhang, P., Tian, O., Rong, Q.Z., Nazal, N.A.M., Lim, K.S., Ahmad, H.: Mach-Zehnder interferometric magnetic field sensor based on a photonic crystal fiber and magnetic fluid. Appl. Opt. 57(9), 2050 (2018)

    Google Scholar 

  40. Lin, J.F., Tsai, C.C., Huang, C.H., Lee, M.Z., Lin, Y.Q.: Magneto-optical properties and magnetic inductive heating of sodium oleate coated Fe3O4 magnetic fluid. Optik 126(9), 907 (2015)

    Google Scholar 

  41. Brojabasi, S., Muthukumaran, T., Laskar, J.M., Philip, J.: The effect of suspended Fe3O4 nanoparticle size on magneto-optical properties of ferrofluids. Opt. Commun. 336, 278 (2015)

    Google Scholar 

  42. Sheikholeslami, M., Rashidi, M.M.: Effect of space dependent magnetic field on free convection of Fe3O4-water nanofluid. J. Taiwan Inst. Chem. Eng. 56, 1 (2015)

    Google Scholar 

  43. Miao, Y., Liu, B., Zhang, K., Liu, Y., Zhang, H.: Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid. Appl. Phys. Lett. 98(2), 021103 (2011)

    Google Scholar 

  44. Thakur, H.V., Nalawade, S.M., Gupta, S., Kitture, R., Kale, S.N.: Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection. Appl. Phys. Lett. 99(16), 161101 (2011)

    Google Scholar 

  45. Xu, M., Ridler, P.J.: Linear dichroism and birefringence effects in magnetic fluids. J. Appl. Phys. 82(1), 326 (1997)

    Google Scholar 

  46. RSoft Photonic Design Software: Photonic Device and Optical Communications System Design (2016) https://optics.synopsys.com/rsoft

  47. Benisty, H., Berger, V., Gérard, J.M., Maystre, D., Tchelnokov, A.: Photonic Crystals: Towards Nanoscale Photonic Devices. Springer, France (1999)

    MATH  Google Scholar 

  48. Andrews, D.L.: Photonics, Nanophotonic Structures and Materials, vol. 2. Wiley, London (2015)

    Google Scholar 

  49. Zalevsky, Z., Abdulhalim, I.: Integrated Nanophotonic Devices. Elsevier, New York (2010)

    Google Scholar 

  50. Su, D., Pu, S., Mao, L., Wang, Z., Qian, K.: A photonic crystal magnetic field sensor using a shoulder-coupled resonant cavity infiltrated with magnetic fluid. Sensors 16(12), 2157 (2016)

    Google Scholar 

  51. Fan, C.Z., Wang, G., Huang, J.P.: Magnetocontrollable photonic crystals based on colloidal ferrofluids. J. Appl. Phys. 103(9), 2012 (2008)

    Google Scholar 

  52. Pu, S., Dong, S., Huang, J.: Tunable slow light based on magnetic-fluid-infiltrated photonic crystal waveguides. J. Opt. 16(4), 045102 (2014)

    Google Scholar 

  53. Dorfner, D.F., Hürlimann, T., Zabel, T., Frandsen, L.H., Abstreiter, G., Finley, J.J.: Silicon photonic crystal nanostructures for refractive index sensing. Appl. Phys. Lett. 93(18), 181103 (2008)

    Google Scholar 

  54. Zhou, J., Tian, H., Yang, D., Liu, Q., Ji, Y.: Integration of high transmittance photonic crystal H2 nanocavity and broadband W1 waveguide for biosensing applications based on silicon-on-insulator substrate. Opt. Commun. 330, 175 (2014)

    Google Scholar 

  55. Mohsenirad, H., Olyaee, S., Seifouri, M.: Design of a new two-dimensional optical biosensor using photonic crystal waveguides and a nanocavity. Photon. Lasers Med. 5(1), 1 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Algerian Ministry of Higher Education and Scientific Research through the CNEPRU project (grant no. A10N01UN250120130017) of the Department of Electronics, Laboratory L.M.I., Frères Mentouri Constantine University and partly by a joined cooperation project between the Laboratory L.P.S. of the Department of Physics, Badji-Mokhtar Annaba University, Annaba, Algeria and the Photonics Research Laboratory of the College of Science, University of Shanghai for Science and Technology, Shanghai, China. K.S. would also like to thank A. Benmerkhi and M. R. Lebbal for proofreading the manuscript before its submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahieddine Lahoubi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saker, K., Bouchemat, T., Lahoubi, M. et al. Magnetic field sensor based on a magnetic-fluid-infiltrated photonic crystal L4 nanocavity and broadband W1 waveguide. J Comput Electron 18, 619–627 (2019). https://doi.org/10.1007/s10825-019-01315-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01315-5

Keywords

Navigation