Skip to main content

Advertisement

Log in

Near-field phase modulation using a semicircular radially gradient metasurface for beam steering of an RF antenna

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A semicircular radially gradient metasurface (SCRGM) structure is proposed to modulate the phase of the electric field of a radiofrequency (RF) antenna in the near field. The metasurface partially covers the antenna aperture, thus facilitating tilting of the beam in the elevation plane (E-plane). In the proposed configuration, the phase modulation capability of the radially gradient metasurface is utilized in combination with a semicircular superstrate made of low-dielectric-constant material, placed at a height of \(0.17 \lambda _0\) above and parallel to the antenna aperture. Firstly, the broadside beam of the patch antenna is tilted away from the normal direction by the phase modulation of the electric field over the aperture of the antenna. Beam steering in the E-plane is achieved by in-plane translation of the SCRGM in front of a stationary primary feed antenna, further modulating the phase. The aperture area and weight of the proposed SCRGM are \(3.77\lambda _0^2\) and 22.0 g, respectively. The compact antenna structure with integrated SCRGM offers \(-45^{\circ }\) to \(+45^{\circ }\) beam steering in the E-plane with reasonably constant gain in the range of 10–11 dBi (with scan loss better than 1 dB). The strategy of partially covering the antenna aperture and further translating the radially gradient metasurface enables a considerably wide beam scanning range using a compact configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cui, T.J., Liu, S., Zhang, L.: Information metamaterials and metasurfaces. J. Mater. Chem. C 5(15), 3644 (2017)

    Article  Google Scholar 

  2. Zhang, L., Mei, S., Huang, K., Qiu, C.W.: Advances in full control of electromagnetic waves with metasurfaces. Adv. Opt. Mater. 4(6), 818 (2016)

    Article  Google Scholar 

  3. Yu, N., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J.P., Capasso, F., Gaburro, Z.: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333 (2011)

    Article  Google Scholar 

  4. Yu, N., Capasso, F.: Flat optics with designer metasurfaces. Nat. Mater. 13, 139 (2014)

    Article  Google Scholar 

  5. Smart, A.G.: Phase-shifting surfaces bend the rules of ray optics. Phys. Today 64, 11 (2011)

    Google Scholar 

  6. Chaimool, S., Rakluea, C., Akkaraekthalin, P.: Mu-near-zero metasurface for microstrip-fed slot antennas. Appl. Phys. A 112(3), 669 (2013)

    Article  Google Scholar 

  7. Sarkhel, A., Bhadra Chaudhuri, S.R.: Enhanced-gain printed slot antenna using an electric metasurface superstrate. Appl. Phys. A 122(10), 934 (2016)

    Article  Google Scholar 

  8. Guo, W., Wang, G., Li, H., Zhuang, Y., Shuai, C.: Ultra-thin reflecting polarization beam splitter under spherical waves’ illumination by using single-layered anisotropic metasurface. Appl. Phys. A 123(1), 103 (2017)

    Article  Google Scholar 

  9. Huang, Y., Yang, L., Li, J., Wang, Y., Wen, G.: Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna. Appl. Phys. Lett. 109(5), 054101 (2016)

    Article  Google Scholar 

  10. Long, M., Jiang, W., Gong, S.: Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface. IEEE Antennas Wirel. Propag. Lett. 16, 2534 (2017)

    Article  Google Scholar 

  11. Zhu, H.L., Liu, X.H., Cheung, S.W., Yuk, T.I.: Frequency-reconfigurable antenna using metasurface. IEEE Trans. Antennas Propag. 62(1), 80 (2014)

    Article  Google Scholar 

  12. Burokur, S.N., Daniel, J.P., Ratajczak, P., de Lustrac, A.: Tunable bilayered metasurface for frequency reconfigurable directive emissions. Appl. Phys. Lett. 97(6), 064101 (2010)

    Article  Google Scholar 

  13. Hum, S.V., Perruisseau-Carrier, J.: Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review. IEEE Trans. Antennas Propag. 62(1), 183 (2014)

    Article  Google Scholar 

  14. Ma, H.F., Chen, X., Xu, H.S., Yang, X.M., Jiang, W.X., Cui, T.J.: Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials. Appl. Phys. Lett. 95(9), 094107 (2009)

    Article  Google Scholar 

  15. Ma, H.F., Chen, X., Yang, X.M., Jiang, W.X., Cui, T.J.: Design of multibeam scanning antennas with high gains and low sidelobes using gradient-index metamaterials. J. Appl. Phys. 107(1), 014902 (2010)

    Article  Google Scholar 

  16. Wei, Z., Cao, Y., Su, X., Gong, Z., Long, Y., Li, H.: Highly efficient beam steering with a transparent metasurface. Opt. Express 21(9), 10739 (2013)

    Article  Google Scholar 

  17. Ratni, B., de Lustrac, A., Piau, G.P., Burokur, S.N.: Modeling and design of metasurfaces for beam scanning. Appl. Phys. A 123, 50 (2017)

    Article  Google Scholar 

  18. Ji, L.Y., Guo, Y.J., Qin, P.Y., Gong, S.X., Mittra, R.: A reconfigurable partially reflective surface (PRS) antenna for beam steering. IEEE Trans. Antennas Propag. 63(6), 2387 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhu, H.L., Cheung, S.W., Yuk, T.I.: Mechanically pattern reconfigurable antenna using metasurface. IET Microw. Antennas Propag. 9(12), 1331 (2015)

    Article  Google Scholar 

  20. Griffiths, H.D., Khan, M.R.: Antenna beam steering technique using dielectric wedges. IEE PROC-H 136(2), 126 (1989)

    Google Scholar 

  21. Gagnon, N., Petosa, A.: Using rotatable planar phase shifting surfaces to steer a high-gain beam. IEEE Trans. Antennas Propag. 61(6), 3086 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Afzal, M.U., Esselle, K.P.: Steering the beam of medium-to-high gain antennas using near-field phase transformation. IEEE Trans. Antennas Propag. 65(4), 1680 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Katare, K.K., Biswas, A., Akhtar, M.J.: Microwave beam steering of planar antennas by hybrid phase gradient metasurface structure under spherical wave illumination. J. Appl. Phys. 122(23), 234901 (2017)

    Article  Google Scholar 

  24. Attia, H., Siddiqui, O., Ramahi, O.: Beam tilting of single microstrip antenna using high permittivity superstrate. Microw. Opt. Technol. Lett. 55(7), 1657 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kranti Kumar Katare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katare, K.K., Biswas, A. & Akhtar, M.J. Near-field phase modulation using a semicircular radially gradient metasurface for beam steering of an RF antenna. J Comput Electron 18, 671–679 (2019). https://doi.org/10.1007/s10825-019-01299-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01299-2

Keywords

Navigation