Skip to main content
Log in

Hopping parameters for tunnel coupling in 2D materials

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Using Bardeen’s approach and orbital wave functions obtained by the algorithm of Herman and Skillman, we calculated interatomic matrix elements for tunnel interaction between the atoms from the set of B, C, N, Si, P, S, Ti, V, Se, Mo, Te and W, which constitute many 2D materials. In a wide range of interatomic distances, these values are approximated by simple functions with a small set of parameters. The results are presented in reference tables. These results will be useful for describing different tunnel phenomena in low-dimensional materials using the tight-binding approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Binnig, G., Rohrer, H.: Scanning tunneling microscopy. IBM J. Res. Dev. 44, 279 (2000)

    Article  Google Scholar 

  2. Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57 (1982)

    Article  Google Scholar 

  3. Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178 (1982)

    Article  Google Scholar 

  4. Hofer, W.A., Foster, A.S., Shluger, A.L.: Theories of scanning probe microscopes at the atomic scale. Rev. Mod. Phys. 75, 1287 (2003)

    Article  Google Scholar 

  5. Alferov, Z.I.: The history and future of semiconductor heterostructures. Semiconductors 32, 1 (1998)

    Article  Google Scholar 

  6. Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419 (2013)

    Article  Google Scholar 

  7. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  Google Scholar 

  8. Pacilé, D., Meyer, J.C., Girit, C.O., Zettl, A.: The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008)

    Article  Google Scholar 

  9. Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nano 9, 372 (2014)

    Article  Google Scholar 

  10. Koenig, S.P., Doganov, R.A., Schmidt, H., Castro Neto, A.H., Ozyilmaz, B.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014)

    Article  Google Scholar 

  11. Low, T., Engel, M., Steiner, M., Avouris, P.: Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90, 081408 (2014)

    Article  Google Scholar 

  12. Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033 (2014)

    Article  Google Scholar 

  13. Lu, W., Nan, H., Hong, J., Chen, Y., Zhu, C., Liang, Z., Ma, X., Ni, Z., Jin, C., Zhang, Z.: Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853 (2014)

    Article  Google Scholar 

  14. Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)

    Article  Google Scholar 

  15. Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., Aufray, B.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010)

    Article  Google Scholar 

  16. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nano 7, 699 (2012)

    Article  Google Scholar 

  17. Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498 (1954)

    Article  MATH  Google Scholar 

  18. Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., Seifert, G.: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260 (1998)

    Article  Google Scholar 

  19. Khalili, K., Penazzi, G., Frauenheim, T.: The spectral adjustment in nanoscale transport combined with the density functional based tight binding method. Comput. Mater. Sci. 133, 14 (2017)

    Article  Google Scholar 

  20. Berthod, C., Giamarchi, T.: Tunneling conductance and local density of states in tight-binding junctions. Phys. Rev. B 84, 155414 (2011)

    Article  Google Scholar 

  21. Trushkov, I., Iorsh, I.: Two-dimensional hyperbolic medium for electrons and photons based on the array of tunnel-coupled graphene nanoribbons. Phys. Rev. B 92, 045305 (2015)

    Article  Google Scholar 

  22. Hawke, L.G.D., Kalosakas, G., Simserides, C.: Electronic parameters for charge transfer along DNA. Eur. Phys. J. E 32, 291 (2010)

    Article  Google Scholar 

  23. Isaeva, O.G., Katkov, V.L., Osipov, V.A.: DNA sequencing through graphene nanogap: a model of sequential electron transport. Eur. Phys. J. B 87, 272 (2014)

    Article  Google Scholar 

  24. Katkov, V.L., Osipov, V.A.: Graphene-based tunnel junction. JETP Lett. 98, 689 (2014)

    Article  Google Scholar 

  25. Katkov, V.L., Osipov, V.A.: Planar graphene tunnel field-effect transistor. Appl. Phys. Lett. 104, 053102 (2014)

    Article  Google Scholar 

  26. Glebov, A.A., Katkov, V.L., Osipov, V.A.: Effect of edge vacancies on performance of planar graphene tunnel field-effect transistor. EPL (Europhys. Lett.) 118, 27003 (2017)

    Article  Google Scholar 

  27. Katkov, V.L., Osipov, V.A.: Review Article: Tunneling-based graphene electronics: methods and examples. J. Vac. Sci. Technol. B 35, 050801 (2017)

    Article  Google Scholar 

  28. Meunier, V., Lambin, P.: Tight-binding computation of the STM image of carbon nanotubes. Phys. Rev. Lett. 81, 5588 (1998)

    Article  Google Scholar 

  29. Settnes, M., Power, S.R., Petersen, D.H., Jauho, A.-P.: Phys. Rev. Lett. 112, 096801 (2014)

    Article  Google Scholar 

  30. Mathon, J.: Tight-binding theory of tunneling giant magnetoresistance. Phys. Rev. B 56, 11810 (1997)

    Article  Google Scholar 

  31. Wahiduzzaman, M., Oliveira, A.F., Philipsen, P., Zhechkov, L., van Lenthe, E., Witek, H.A., Heine, T.: DFTB parameters for the periodic table: part 1. Electronic structure. J. Chem. Theory Comput. 9, 4006 (2013)

    Article  Google Scholar 

  32. Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57 (1961)

    Article  Google Scholar 

  33. Paz, O., Brihuega, I., Gómez-Rodríguez, J.M., Soler, J.M.: Tip and surface determination from experiments and simulations of scanning tunneling microscopy and spectroscopy. Phys. Rev. Lett. 94, 056103 (2005)

    Article  Google Scholar 

  34. Martìn-Rodero, A., Flores, F., March, N.H.: Tight-binding theory of tunneling current with chemisorbed species. Phys. Rev. B 38, 10047 (1988)

    Article  Google Scholar 

  35. Herman, F., Skillman, S.: Atomic Structure Calculations. Prentice-Hall, Upper Saddle River (1963)

    Google Scholar 

  36. Slater, J.C.: Statistical exchange-correlation in the self-consistent field. Adv. Quantum Chem. 6, 1 (1972)

    Article  Google Scholar 

  37. Zope, R.R., Dunlap, B.I.: Slater’s exchange parametersfor analytic and variationalcalculations. J. Chem. Theory Comput. 1, 1193 (2005)

    Article  Google Scholar 

  38. Schwarz, K.: Optimization of the statistical exchange parameter \(\alpha \) for the free atoms H through Nb. Phys. Rev. B 5, 2466 (1972)

    Article  Google Scholar 

  39. Schwarz, K.: Optimized statistical exchange parameters for atoms with higher Z. Theor. Chim. Acta 34, 225 (1974)

    Article  Google Scholar 

  40. Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622 (1947)

    Article  MATH  Google Scholar 

  41. Ooi, N., Rairkar, A., Lindsley, L., Adams, J.B.: Electronic structure and bonding in hexagonal boron nitride. J. Phys. Condens. Matter 18, 97 (2006)

    Article  Google Scholar 

  42. Li, P., Appelbaum, I.: Electrons and holes in phosphorene. Phys. Rev. B 90, 115439 (2014)

    Article  Google Scholar 

  43. Cahangirov, S., Topsakal, M., Aktürk, E., Sahin, H., Ciraci, S.: Two-and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)

    Article  Google Scholar 

  44. Amara, H., Latil, S., Meunier, V., Lambin, P., Charlier, J.-C.: Scanning tunneling microscopy fingerprints of point defects in graphene: a theoretical prediction. Phys. Rev. B 76, 115423 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Katkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katkov, V.L., Lobanov, D.A. Hopping parameters for tunnel coupling in 2D materials. J Comput Electron 18, 138–145 (2019). https://doi.org/10.1007/s10825-018-1281-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1281-y

Keywords

Navigation