Modeling and analysis of an Ni:ZnO-based Schottky pattern for NO2 detection


In recent years, new emerging oxide materials have demonstrated significant potential for use in gas sensors. We performed a theoretical investigation and analysis of an Ni-doped ZnO (NZO)-based gas sensor. The conductivity and sensitivity of the gas-sensing layer are illustrated as functions of the temperature and gas concentration. The analysis was carried out for an oxidizing agent, i.e., NO2, in which charge is attracted to the adsorbent layer and increases its resistance. The simulation results revealed the variation in resistance versus the temperature and gas concentration. To confirm the feasibility of the model, all the simulation results were compared with reported experimental work. This work will aid researchers in a reasonable choice of materials for and optimal design of high-performance gas sensors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Williams, D.E.: Semiconducting oxides as gas-sensitive resistors. Sens. Actuators B Chem. 57, 1–16 (1999)

    Article  Google Scholar 

  2. 2.

    Jimenez-Cadena, G., Riu, J., Rius, F.X.: Gas sensors based on nanostructured materials. Analyst 132(11), 1083–1099 (2007)

    Article  Google Scholar 

  3. 3.

    Wang, C., Yin, L., Zhang, L., Xiang, D., Gao, R.: Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010)

    Article  Google Scholar 

  4. 4.

    Jagadish, C., Pearton, S.J. (eds.): Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications. Elsevier, Amsterdam (2011)

    Google Scholar 

  5. 5.

    Coleman, V.A., Jagadish, C.: Basic properties and applications of ZnO. In: Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications (2006)

  6. 6.

    Janotti, A., Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72(12), 126501 (2009)

    Article  Google Scholar 

  7. 7.

    Fan, Z., Lu, J.G.: Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 5(10), 1561–1573 (2005)

    Article  Google Scholar 

  8. 8.

    Chen, T.-M., Kuschner, W.G., Gokhale, J., Shofer, S.: Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am. J. Med. Sci. 333(4), 249–256 (2007)

    Article  Google Scholar 

  9. 9.

    National Research Council: Acute Toxicity of Nitrogen Dioxide (1998)

  10. 10.

    Ganbavle, V.V., Inamdar, S.I., Agawane, G.L., Kim, J.H., Rajpure, K.Y.: Synthesis of fast response, highly sensitive and selective Ni: ZnO based NO2 sensor. Chem. Eng. J. 286, 36–47 (2016)

    Article  Google Scholar 

  11. 11.

    Lupan, O., Shishiyanu, S., Chow, L., Shishiyanu, T.: Nanostructured zinc oxide gas sensors by successive ionic layer adsorption and reaction method and rapid photothermal processing. Thin Solid Films 516(10), 3338–3345 (2008)

    Article  Google Scholar 

  12. 12.

    Xu, M., Li, Q., Ma, Y., Fan, H.: Ni-doped ZnO nanorods gas sensor: enhanced gas-sensing properties, AC and DC electrical behaviors. Sens. Actuators B Chem. 199, 403–409 (2014)

    Article  Google Scholar 

  13. 13.

    Shirage, P.M., Rana, A.K., Kumar, Y., Sen, S., Leonardi, S.G., Neri, G.: Sr- and Ni-doping in ZnO nanorods synthesized by a simple wet chemical method as excellent materials for CO and CO2 gas sensing. RSC Adv. 6(86), 82733–82742 (2016)

    Article  Google Scholar 

  14. 14.

    Comsol, A.B.: COMSOL Multiphysics User’s Guide. Version, p. 333 (2005)

  15. 15.

    Dickinson, E.J.F., Ekström, H., Fontes, Ed: COMSOL multiphysics: finite element software for electrochemical analysis. A mini-review. Electrochem. Commun. 40, 71–74 (2014)

    Article  Google Scholar 

  16. 16.

    Endres, H.-E., Jander, H.D., Göttler, W.: A test system for gas sensors. Sens. Actuators B Chem. 23(2–3), 163–172 (1995)

    Article  Google Scholar 

  17. 17.

    Harvey, I., Coles, G., Watson, J.: The development of an environmental chamber for the characterization of gas sensors. Sens. Actuators 16(4), 393–405 (1989)

    Article  Google Scholar 

  18. 18.

    Niyat, F.Y., Abadi, M.H.S.: COMSOL-based modeling and simulation of SnO2/rGO gas sensor for detection of NO2. Sci. Rep. 8(1), 2149 (2018)

    Article  Google Scholar 

  19. 19.

    Lazik, D., Sood, P.: Approach for self-calibrating CO2 measurements with linear membrane-based gas sensors. Sensors 16(11), 1930 (2016)

    Article  Google Scholar 

  20. 20.

    Jaaniso, R., Tan, O.K. (eds.): Semiconductor Gas Sensors. Elsevier, Amsterdam (2013)

    Google Scholar 

  21. 21.

    Eranna, G.: Metal Oxide Nanostructures as Gas Sensing Devices. CRC Press, Boca Raton (2016)

    Google Scholar 

  22. 22.

    Trott, G.R., Shorey, A.: Glass wafer mechanical properties: a comparison to silicon. In: 2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), pp. 359–362. IEEE (2011)

  23. 23.

    Krýsa, J., Novotná, P., Kment, Š., Mills, A.: Effect of glass substrate and deposition technique on the properties of sol gel TiO2 thin films. J. Photochem. Photobiol. A 222(1), 81–86 (2011)

    Article  Google Scholar 

  24. 24.

    Lee, S., Hinchet, R., Lee, Y., Yang, Y., Lin, Z.-H., Ardila, G., Montès, L., Mouis, M., Wang, Z.L.: Ultrathin nanogenerators as self-powered/active skin sensors for tracking eye ball motion. Adv. Funct. Mater. 24(8), 1163–1168 (2014)

    Article  Google Scholar 

  25. 25.

    Sun, X.W., Liu, Z.J., Chen, Q.F., Lu, H.W., Song, T., Wang, C.W.: Heat capacity of ZnO with cubic structure at high temperatures. Solid State Commun. 140(5), 219–224 (2006)

    Article  Google Scholar 

  26. 26.

    Ghosh, C.K., Malkhandi, S., Mitra, M.K., Chattopadhyay, K.K.: Effect of Ni doping on the dielectric constant of ZnO and its frequency dependent exchange interaction. J. Phys. D Appl. Phys. 41(24), 245113 (2008)

    Article  Google Scholar 

  27. 27.

    Laibinis, P.E., Whitesides, G.M., Allara, D.L., Tao, Y.T., Parikh, A.N., Nuzzo, R.G.: Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J. Am. Chem. Soc. 113(19), 7152–7167 (1991)

    Article  Google Scholar 

  28. 28.

    Mackay, T.G.: On the effective permittivity of silver-insulator nanocomposites. J. Nanophotonics 1(1), 019501 (2007)

    Article  Google Scholar 

  29. 29.

    Vaartstra, B.A., Marsh, E.P.: Methods for Preparing Ruthenium Oxide Films. U.S. Patent 6,133,159, issued October 17, 2000

  30. 30.

    Ferizović, D., Hussey, L.K., Huang, Y.-S., Muñoz, M.: Determination of the room temperature thermal conductivity of RuO2 by the photothermal deflection technique. Appl. Phys. Lett. 94(13), 131913 (2009)

    Article  Google Scholar 

  31. 31.

    Reddy, Y.K.V., Mergel, D.: Structural and electrical properties of RuO2 thin films prepared by rf-magnetron sputtering and annealing at different temperatures. J. Mater. Sci. Mater. Electron. 17(12), 1029–1034 (2006)

    Article  Google Scholar 

  32. 32.

    Barsan, N., Koziej, D., Weimar, U.: Metal oxide-based gas sensor research: How to? Sens. Actuators B Chem. 121(1), 18–35 (2007)

    Article  Google Scholar 

  33. 33.

    Clifford, P.K., Tuma, D.T.: Characteristics of semiconductor gas sensors II. Transient response to temperature change. Sens. Actuators 3, 255–281 (1982)

    Article  Google Scholar 

  34. 34.

    Wang, C.C., Akbar, S.A., Madou, M.J.: Ceramic based resistive sensors. J. Electroceram. 2(4), 273–282 (1998)

    Article  Google Scholar 

  35. 35.

    Mishra, V.N., Agarwal, R.P.: Sensitivity, response and recovery time of SnO2 based thick-film sensor array for H2, CO, CH4 and LPG. Microelectron. J. 29(11), 861–874 (1998)

    Article  Google Scholar 

  36. 36.

    Comini, E.: Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta 568(1–2), 28–40 (2006)

    Article  Google Scholar 

  37. 37.

    Gomri, S., et al.: Adsorption–desorption noise in gas sensors: modelling using Langmuir and Wolkenstein models for adsorption. Sens. Actuators B Chem. 114(1), 451–459 (2006)

    Article  Google Scholar 

  38. 38.

    Esser, P., Gopel, W.: Physical adsorption on single crystal zinc oxide. Surf. Sci. 97, 309–318 (1980)

    Article  Google Scholar 

  39. 39.

    Wilson, D.M., Hoyt, S., Janata, J., Booksh, K., Obando, L.: Chemical sensors for portable, handheld field instruments. IEEE Sens. J. 1(4), 256–274 (2001)

    Article  Google Scholar 

  40. 40.

    Takata, M., Tsubone, D., Yanagida, H.: Dependence of electrical conductivity of ZnO on degree of sensing. J. Am. Ceram. Soc. 59, 4–8 (1976)

    Article  Google Scholar 

  41. 41.

    Sadek, A.Z., et al.: Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing. IEEE Sens. J. 7(6), 919–924 (2007)

    Article  Google Scholar 

  42. 42.

    Stănoiu, A., Simion, C.E., Somăcescu, S.: NO2 sensing mechanism of ZnO–Eu2O3 binary oxide under humid air conditions. Sens. Actuators B Chem. 186, 687–694 (2013)

    Article  Google Scholar 

  43. 43.

    Saadi, L., Lambert-Mauriat, C., Oison, V., Ouali, H., Hayn, R.: Mechanism of NOx sensing on WO3 surface: first principle calculations. Appl. Surf. Sci. 293, 76–79 (2014)

    Article  Google Scholar 

  44. 44.

    Caglar, M., Caglar, Y., Ilican, S.: The determination of the thickness and optical constants of the ZnO crystalline thin film by using envelope method. J. Optoelectron. Adv. Mater. 8(4), 1410 (2006)

    Google Scholar 

  45. 45.

    Srikant, V., Clarke, D.R.: On the optical band gap of zinc oxide. J. Appl. Phys. 83(10), 5447–5451 (1998)

    Article  Google Scholar 

  46. 46.

    Khemiri, N., et al.: Highly absorbing Cu–In–O thin films for photovoltaic applications. Thin Solid Films 516(20), 7031–7035 (2008)

    Article  Google Scholar 

  47. 47.

    Peres, N.M.R., Guinea, F., Neto, A.H.C.: Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73(12), 125411 (2006)

    Article  Google Scholar 

  48. 48.

    Dingle, R.B., Dingle, R.B.: Asymptotic Expansions: Their Derivation and Interpretation, vol. 48. Academic, London (1973)

    Google Scholar 

  49. 49.

    Ahmadi, M.T., et al.: Graphene nanoribbon conductance model in parabolic band structure. J. Nanomater. 2010, 12 (2010)

    Article  Google Scholar 

  50. 50.

    Kažukauskas, V., et al.: Electrical conductivity of carbon nanotubes and polystyrene composites. Phys. Status Solidi (c) 5(9), 3172–3174 (2008)

    Article  Google Scholar 

  51. 51.

    Areshkin, D.A., Gunlycke, D., White, C.T.: Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Lett. 7(1), 204–210 (2007)

    Article  Google Scholar 

  52. 52.

    Ahamdi, M.T., Ismail, R., Anwar, S.: Handbook of Research on Nanoelectronic Sensor Modeling and Applications. IGI Global, USA (2016)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Deepak Punetha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Punetha, D., Dixit, H. & Pandey, S.K. Modeling and analysis of an Ni:ZnO-based Schottky pattern for NO2 detection. J Comput Electron 18, 300–307 (2019).

Download citation


  • COMSOL multiphysics
  • Gas sensor
  • NO2 detection
  • NZO thin film
  • Schottky pattern