A first-principles study of the structural, elastic, electronic, vibrational, and optical properties of BaSe1−xTex


The structural, elastic, electronic, vibrational, and optical properties of BaSe1−xTex alloys are investigated by means of the full-potential linearized augmented plane wave method. The exchange–correlation effects are treated with the local density approximation, as well as the GGA-PBE, GGA-PBEsol, and GGA + mBJ schemes of the generalized gradient approximation. Ternary BaSe1−xTex compounds have not yet been synthesized. Improved predictions of the structural parameters are obtained using the GGA-PBEsol approach. Calculations of the electronic and optical properties with the GGA + mBJ approach yield accurate results. Ternary BaSe1−xTex alloys are wide-band-gap semiconductors with a direct gap Γ–Γ. The upper valence band is mainly due to Se p and Te p states, while the bottom of the conduction band results essentially from Ba d states. The dielectric function, refractive index, reflectivity, absorption coefficient, and energy-loss function are calculated in the range 0–35 eV. The increase in x gives rise to a redshift of the optical spectra. BaSe1−xTex alloys exhibit reflective properties of metals in some energy ranges. The static dielectric constant ɛ1(0) and the static refractive index n0 are calculated. The investigation of the elastic and vibrational properties shows that ternary BaSe1−xTex should be mechanically and dynamically stable, elastically anisotropic, brittle, and relatively soft.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Heng, K.L., Chua, S.J., Wu, P.: Prediction of semiconductor material properties by the properties of their constituent chemical elements. Chem. Mater. 12, 1648–1653 (2000)

    Article  Google Scholar 

  2. 2.

    Bouhemadou, A., Khenata, R., Zegrar, F., Sahnoun, M., Baltache, H., Reshak, A.H.: Ab initio study of structural, electronic, elastic and high pressure properties of barium chalcogenides. Comput. Mater. Sci. 38, 263–270 (2006)

    Article  Google Scholar 

  3. 3.

    Kalpana, G., Palanivel, B., Rajagopalan, M.: Electronic structure and structural phase stability in BaS, BaSe, and BaTe. Phys. Rev. B 50, 12318–12325 (1994)

    Article  Google Scholar 

  4. 4.

    Benamrani, A., Kassali, K., Bouamama, Kh.: Pseudopotential study of barium chalcogenides under hydrostatic pressure. High Pres. Res. 30, 207–2018 (2010)

    Article  Google Scholar 

  5. 5.

    Wei, S.-H., Krakauer, H.: Local-density-functional calculations of the pressure-induced metallization of BaSe and BaTe. Phys. Rev. Lett. 55, 1200–1203 (1985)

    Article  Google Scholar 

  6. 6.

    Carlsson, A.E., Wilkins, J.W.: Band-overlap metallization of BaS, BaSe, and BaTe. Phys. Rev. B 29, 5836–5839 (1984)

    Article  Google Scholar 

  7. 7.

    Dadsetani, M., Pourghazi, A.: The dielectric constant of barium mono-chalcogenides and their improved band gap results. Opt. Commun. 266, 562–564 (2006)

    Article  Google Scholar 

  8. 8.

    Feng, Z., Hu, H., Lv, Z., Cui, S.: First-principles study of electronic and optical properties of BaS, BaSe and BaTe. Cent. Eur. J. Phys. 8, 782–788 (2010)

    Article  Google Scholar 

  9. 9.

    Drablia, S., Meradji, H., Ghemid, S., Boukhris, N., Bouhafs, B., Nouet, G.: Electronic and optical properties of BaO, BaS, BaSe, BaTe and BaPo compounds under hydrostatic pressure. Mod. Phys. Lett. B 23, 3065–3079 (2009)

    Article  Google Scholar 

  10. 10.

    El Haj Hassan, F., Akbarzadeh, H.: First-principles elastic and bonding properties of barium chalcogenides. Comput. Mater. Sci. 38, 362–368 (2006)

    Article  Google Scholar 

  11. 11.

    Bhardwaj, P., Singh, S., Gaur, N.K.: Structural and elastic properties of barium chalcogenides (BaX, X = O, Se, Te) under high pressure. Open Physics 6, 223–229 (2008)

    Article  Google Scholar 

  12. 12.

    Tuncel, E., Colakoglu, K., Deligoz, E., Ciftci, Y.O.: A first-principles study on the structural, elastic, vibrational, and thermodynamical properties of BaX (X = S, Se, and Te). J. Phys. Chem. Solids 70, 371–378 (2009)

    Article  Google Scholar 

  13. 13.

    Arya, B.S., Aynyas, M., Sanyal, S.P.: High pressure study of structural and elastic properties of barium chalcogenides. Indian J. Pure Appl. Phys. 46, 722–726 (2008)

    Google Scholar 

  14. 14.

    Rao, B.S., Sanyal, S.P.: High pressure structural phase transition in BaSe and BaTe. Phys. Status Solidi B 165, 369–375 (1991)

    Article  Google Scholar 

  15. 15.

    Grzybowski, T.A., Ruoff, A.L.: High-pressure phase transition in BaSe. Phys. Rev. B 27, 6502–6503 (1983)

    Article  Google Scholar 

  16. 16.

    Grzybowski, T.A., Ruoff, A.L.: Band-overlap metallization of BaTe. Phys. Rev. Lett. 53, 489–492 (1984)

    Article  Google Scholar 

  17. 17.

    Syassen, K., Christensen, N.E., Winzen, H., Fischer, K., Evers, J.: Optical response and band-structure calculations of alkaline-earth tellurides under pressure. Phys. Rev. B 35, 4052–4059 (1987)

    Article  Google Scholar 

  18. 18.

    Kaneko, Y., Koda, T.: New developments in IIa–VIb (alkaline–earth chalcogenide) binary semiconductors. J. Cryst. Growth 86, 72–78 (1988)

    Article  Google Scholar 

  19. 19.

    Pourghazi, A., Dadsetani, M.: Electronic and optical properties of BaTe, BaSe and BaS from first principles. Phys. B 370, 35–43 (2005)

    Article  Google Scholar 

  20. 20.

    Gokoglu, G.: First principles study of barium chalcogenides. J. Phys. Chem. Solids 69, 2924–2927 (2008)

    Article  Google Scholar 

  21. 21.

    Straub, G.K., Harrison, W.A.: Self-consistent tight-binding theory of elasticity in ionic solids. Phys. Rev. B 39, 10325–10330 (1989)

    Article  Google Scholar 

  22. 22.

    Kalpana, G., Palanivel, B., Rajagopalan, M.: Structural phase stability in BaSe. Phys. Status Solidi B 184, 153–157 (1994)

    Article  Google Scholar 

  23. 23.

    Lin, G.Q., Gong, H., Wu, P.: Electronic properties of barium chalcogenides from first-principles calculations: tailoring wide-band-gap II–VI semiconductors. Phys. Rev. B 71, 085203 (2005)

    Article  Google Scholar 

  24. 24.

    Drablia, S., Boukhris, N., Boulechfar, R., Meradji, H., Ghemid, S., Ahmed, R., Bin Omran, S., El Haj Hassan, F., Khenata, R.: Ab initio calculations of the structural, electronic, thermodynamic and thermal properties of BaSe1−xTex alloys. Phys. Scr. 92, 105701 (2017)

    Article  Google Scholar 

  25. 25.

    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Kohn, W., Sham, L.J.: Self-consistent equation including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Blaha, P., Schwarz, K., Madsen, K., Kvasnicka, D., Luitz, J.: WIEN2k: an augmented plane wave plus local orbitals program for calculating crystal properties. Techn. Universität, Wien (2001)

    Google Scholar 

  28. 28.

    Wang, W., Fan, H., Ye, Y.: Effect of electric field on the structure and piezoelectric properties of poly(vinylidene fluoride) studied by density functional theory. Polymer 51, 3575–3581 (2010)

    Article  Google Scholar 

  29. 29.

    Liu, K., Fan, H., Ren, P., Yang, C.: Structural, electronic and optical properties of BiFeO3 studied by first-principles. J. Alloys Compd. 509, 1901–1905 (2011)

    Article  Google Scholar 

  30. 30.

    Liu, X., Fan, H.-Q.: Theoretical studies on electronic structure and optical properties of Bi2WO6. Optik 158, 962–969 (2018)

    Article  Google Scholar 

  31. 31.

    Ceperley, D.M., Alder, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980)

    Article  Google Scholar 

  32. 32.

    Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)

    Article  Google Scholar 

  33. 33.

    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  34. 34.

    Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

    Article  Google Scholar 

  35. 35.

    Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Erratum: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 102, 039902 (2009)

    Article  Google Scholar 

  36. 36.

    Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  Google Scholar 

  37. 37.

    Kaneko, Y., Morimoto, K., Koda, T.: Optical properties of alkaline-earth chalcogenides. I. Single crystal growth and infrared reflection spectra due to optical phonons. J. Phys. Soc. Jpn. 51, 2247–2254 (1982)

    Article  Google Scholar 

  38. 38.

    Bridgman, P.W.: The compression of 46 substances to 50,000 kg/cm2. Proc. Am. Acad. Arts Sci. 74, 21–51 (1940)

    Article  Google Scholar 

  39. 39.

    Bahloul, B., Bentabet, A., Amirouche, L., Bouhadda, Y., Bounab, S., Deghfel, B., Fenineche, N.: Ab initio calculations of structural, electronic, optical, and thermodynamic properties of alkaline earth tellurides BaxSr1−xTe. J. Phys. Chem. Solids 75, 307–314 (2014)

    Article  Google Scholar 

  40. 40.

    Lapeyre, G.J., Hensley, E.B.: Melting point and growth of barium telluride single crystals. J. Appl. Phys. 36, 2054–2056 (1965)

    Article  Google Scholar 

  41. 41.

    Chen, X.-Q., Niu, H., Li, D., Li, Y.: Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275–1281 (2011)

    Article  Google Scholar 

  42. 42.

    Anderson, O.L., Nafe, J.E.: The bulk modulus–volume relationship for oxide compounds and related geophysical problems. J. Geophys. Res. 70, 3951–3963 (1965)

    Article  Google Scholar 

  43. 43.

    Born, M., Huang, K.: Dynamical theory of crystal lattices. Clarendon, Oxford (1956)

    Google Scholar 

  44. 44.

    Haines, J., Léger, J.M., Bocquillon, G.: Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31, 1–23 (2001)

    Article  Google Scholar 

  45. 45.

    Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992)

    Article  Google Scholar 

  46. 46.

    Newnham, R.E.: Properties of Materials, Anisotropy, Symmetry, Structure. Oxford University Press, New York (2005)

    Google Scholar 

  47. 47.

    Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)

    Article  Google Scholar 

  48. 48.

    Frantsevich, I.N., Voronov, F.F., Bokuta, S.A.: Elastic Constants and Elastic Moduli of Metals and Insulators: Handbook. NaukovaDumka, Kiev (1983)

    Google Scholar 

  49. 49.

    Brazhkin, V.V., Lyapin, A.G., Hemley, R.J.: Harder than diamond: dreams and reality. Philos. Mag. A 82, 231–253 (2002)

    Article  Google Scholar 

  50. 50.

    Ali, R., Mohammad, S., Ullah, H., Khan, S.A., Uddin, H., Khan, M., Khan, N.U.: The structural, electronic and optical response of IIA–VIA compounds through the modified Becke–Johnson potential. Phys. B 410, 93–98 (2013)

    Article  Google Scholar 

  51. 51.

    Saum, G.A., Hensley, E.B.: Fundamental optical absorption in the IIA–VIB compounds. Phys. Rev. 113, 1019–1022 (1959)

    Article  Google Scholar 

  52. 52.

    Zollweg, R.J.: Optical absorption and photoemission of barium and strontium oxides, sulfides, selenides, and tellurides. Phys. Rev. 111, 113–119 (1958)

    Article  Google Scholar 

  53. 53.

    Togo, A., Tanaka, I.: First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015)

    Article  Google Scholar 

  54. 54.

    Penn, D.R.: Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)

    Article  Google Scholar 

  55. 55.

    Kaneko, Y., Morimoto, K., Koda, T.: Optical properties of alkaline-earth chalcogenides. II. Vacuum ultraviolet reflection spectra in the synchrotron radiation region of 4–40 eV. J. Phys. Soc. Jpn. 52, 4385–4396 (1983)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohammed Driss-Khodja.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khalfallah, B., Driss-Khodja, F., Saadaoui, F. et al. A first-principles study of the structural, elastic, electronic, vibrational, and optical properties of BaSe1−xTex. J Comput Electron 17, 1478–1491 (2018). https://doi.org/10.1007/s10825-018-1249-y

Download citation


  • BaSe1−xTex
  • Wide-band-gap semiconductors
  • Structural parameters
  • Electronic properties
  • Optical properties
  • Phonon dispersion