Skip to main content

Advertisement

Log in

Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper presents an electro-thermal radio frequency (RF) model and performance analysis for multilayer graphene nanoribbon (MLGNR) interconnects. The number of conduction channels is calculated as a function of temperature and Fermi energy. A comprehensive model is developed to calculate the temperature dependent effective mean free path (MFP) considering different scattering mechanisms. The RF model of doped and undoped metallic top-contact (TC), as well as side-contact (SC) MLGNR interconnects is demonstrated using ABCD parameter based multi-conductor transmission line formalism. The RF performance of arsenic pentafluoride (\(\text {AsF}_5\)), lithium (Li) and ferric chloride (\(\text {FeCl}_3\)) intercalation doped TC-MLGNR interconnects is investigated and compared with pristine (undoped) TC and SC-MLGNR interconnects for different temperatures. For the first time, our investigation shows that the electro-thermal RF performance of TC-MLGNR can be improved by intercalation doping. It is found that \(\text {AsF}_5\), Li and \(\text {FeCl}_3\) intercalated top-contact MLGNR can operate up to a few GHz for semi-global interconnects (\(100\,\upmu \)m) and several MHz for global interconnects (\(500\,\upmu \)m). Our analysis also proves that the Li intercalated TC-MLGNR shows the best RF performance as compared to conventional copper, pristine, and other type of intercalation doped TC-MLGNR interconnects over the chip operating temperature range from 233 to 378 K. The performance of Li intercalated TC-MLGNR has been found to be improved further by increasing the specularity during fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  Google Scholar 

  2. Avouris, P., Chen, Z., Perebeinos, V.: Carbon based electronics. Nat. Nanotechnol. 2(10), 605–615 (2007)

    Article  Google Scholar 

  3. Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Devices 56(8), 1567–1578 (2009)

    Article  Google Scholar 

  4. Cui, J.P., Zhao, W.S., Yin, W.Y., Hu, J.: Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 54(1), 126–132 (2012)

    Article  Google Scholar 

  5. Zhao, W.S., Yin, W.Y.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 56(3), 638–645 (2014)

    Article  Google Scholar 

  6. Nishad, A.K., Sharma, R.: Analytical time-domain models for performance optimization of multilayer GNR interconnects. IEEE J. Sel. Top. Quantum Electron. 20(1), 1–8 (2014)

    Article  Google Scholar 

  7. Naeemi, A., Meindl, J.D.: Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans. Electron Devices 56(9), 1822–1833 (2009)

    Article  Google Scholar 

  8. Naeemi, A., Meindl, J.D.: Conductance modeling for graphene nanoribbon (GNR) interconnects. IEEE Electron Device Lett. 28(5), 428–431 (2007)

    Article  Google Scholar 

  9. Nasiri, S.H., Moravvej-Farshi, M.K., Faez, R.: Stability analysis in graphene nanoribbon interconnects. IEEE Electron Device Lett. 31(12), 1458–1460 (2010)

    Article  Google Scholar 

  10. Chen, X., Akinwande, D., Lee, K.-J., Close, G.F., Yasuda, S., Paul, B.C., Fujita, S., Kong, J., Wong, H.-S.P.: Fully integrated graphene and carbon nanotube interconnects for gigahertz high-speed CMOS electronics. IEEE Trans. Electron. Devices 57(11), 3137–3143 (2010)

    Article  Google Scholar 

  11. Lee, K.J., Qazi, M., Kong, J., Chandrakasan, A.P.: Low-swing signalling on monolithically integrated global grapheme interconnects. IEEE Trans. Electron. Devices 57(12), 3418–3425 (2010)

    Article  Google Scholar 

  12. Sarkar, D., Xu, C., Li, H., Banerjee, K.: High-frequency behavior of graphene-based interconnects—part I: impedance modeling. IEEE Trans. Electron Devices 58(3), 843–852 (2011)

    Article  Google Scholar 

  13. Kumar, V., Rakheja, S., Naeemi, A.: Modeling and optimization for multi-layer graphene nanoribbon conductors. In: IEEE IITC/MAM, pp. 1–3 (2011)

  14. Kumar, V., Rakheja, S., Naeemi, A.: Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors. IEEE Trans. Electron Devices 59(10), 2753–2761 (2012)

    Article  Google Scholar 

  15. Bao, W., Wan, J., Han, X., Cai, X., Zhu, H., Kim, D., Ma, D., Xu, Y., Munday, J.N., Dennis Drew, H., Fuhrer, M.S., Hu, L.: Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 5, 4224 (2014)

    Article  Google Scholar 

  16. Jiang, J., Kang, J., Cao, W., Xie, X., Zhang, H., Chu, J., Liu, W., Banerjee, K.: Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects. Nano Lett. 17(3), 1482–1488 (2017)

    Article  Google Scholar 

  17. ITRS International Technology Working Groups, International Technology Roadmap for Semiconductors (2013)

  18. Jiang, J., Kang, J., Banerjee, K.: Characterization of self-heating and current-carrying capacity of intercalation doped graphene-nanoribbon interconnects. In: IEEE International Reliability Physics Symposium (IRPS) (2017)

  19. Bhattacharya, S., Das, D., Rahaman, H.: Analysis of temperature dependent power supply voltage drop in graphene nanoribbon and Cu based power interconnects. AIMS Mater. Sci. 3(4), 1493–1506 (2016)

    Article  Google Scholar 

  20. Chen, J.H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on SiO\(_2\). Nat. Nanotechnol. 3, 206–209 (2008)

    Article  Google Scholar 

  21. Fratini, S., Guinea, F.: Substrate-limited electron dynamics in graphene. Phys. Rev. B 77, 195415 (2008)

    Article  Google Scholar 

  22. Nishad, A.K., Sharma, R.: Lithium-intercalated graphene interconnects: prospects for on-chip applications. IEEE J. Electron Devices Soc. 4(6), 485–489 (2016)

    Article  Google Scholar 

  23. Kumar, V.R., Majumder, M.K., Kukkam, N.R., Kaushik, B.K.: Time and frequency domain analysis of MLGNR interconnects. IEEE Trans. Nanotechnol. 14(3), 484–492 (2015)

    Article  Google Scholar 

  24. Kumar, V.R., Majumder, M.K., Alam, A., Kukkam, N.R., Kaushik, B.K.: Stability and delay analysis of multi-layered GNR and multi-walled CNT interconnects. J. Comput. Electron. 14(2), 611–618 (2015)

    Article  Google Scholar 

  25. Reddy, K.N., Majumder, M.K., Kaushik, B.K.: Delay uncertainty in MLGNR interconnects under process induced variations of width, doping, dielectric thickness and mean free path. J. Comput. Electron. 13(3), 639–646 (2014)

    Article  Google Scholar 

  26. Rai, M.K., Sarkar, S., Kaushik, B.K.: Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects. J. Comput. Electron. 15(2), 358–366 (2016)

    Article  Google Scholar 

  27. Rai, M.K., Arora, S., Kaushik, B.K.: Temperature dependent modeling and performance analysis of coupled MLGNR interconnects. Int. J. Circuit Theory Appl. 46, 299–312 (2018)

    Article  Google Scholar 

  28. Clayton, P.R.: Analysis of Multiconductor Transmission Lines. Wiley, New York (1994)

    Google Scholar 

  29. Dresselhaus, M.S., Dresselhaus, G.: Intercalation compounds of graphite. Adv. Phys. 51(1), 1–186 (2002)

    Article  Google Scholar 

  30. Enoki, T., Suzuki, M., Endo, M.: Graphite Intercalation Compounds and Applications. Oxford University Press, New York (2003)

    Google Scholar 

  31. Neto, A.H.C., Guinea, F., Peres, N., Novoselov, K., Geim, A.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  Google Scholar 

  32. Rakheja, S., Kumar, V., Naeemi, A.: Evaluation of the potential performance of graphene nano-ribbons as on chip interconnects. Proc. IEEE 101(7), 1740–1765 (2013)

    Article  Google Scholar 

  33. Morozov, S., Novoselov, K., Katsnelson, M.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008)

    Article  Google Scholar 

  34. Perebeinos, V., Avouris, P.: Inelastic scattering and current saturation in graphene. Phys. Rev. B 81(19), 195442 (2010)

    Article  Google Scholar 

  35. Nishad, A.K., Sharma, R.: Self-consistent capacitance model for multilayer graphene nanoribbon interconnects. Micro Nano Lett. 10(8), 404–407 (2015)

    Article  Google Scholar 

  36. Nishad, A.K., Sharma, R.: Performance improvement in SC-MLGNRs interconnects using interlayer dielectric insertion. IEEE Trans. Emerg. Top. Comput. 3(4), 470–482 (2015)

    Article  Google Scholar 

  37. Stellari, F., Lacaita, A.L.: New formulas of interconnect capacitances based on results of conformal mapping method. IEEE Trans. Electron Devices 47(1), 222–231 (2000)

    Article  Google Scholar 

  38. Banerjee, K., Mehrotra, A.: Analysis of on-chip inductance effects for distributed RLC interconnects. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(8), 904–915 (2002)

    Article  Google Scholar 

  39. Kumar, M.G., Chandel, R., Agrawal, Y.: Timing and stability analysis of carbon nanotube interconnects. In: IEEE International Symposium on Nanoelectronic and Information Systems, pp. 308–313 (2015)

  40. Bointon, T.H., Khrapach, I., Yakimova, R., Shytov, A.V., Craciun, M.F., Russo, S.: Approaching magnetic ordering in graphene materials by FeCl\(_3\) intercalation. Nano Lett. 14(4), 1751–1755 (2014)

    Article  Google Scholar 

  41. Khrapach, I., Withers, F., Bointon, T.H., Polyushkin, D.K., Barnes, W.L., Russo, S., Craciun, M.F.: Novel highly conductive and transparent graphene based conductors. Adv. Mater. 24, 2844–2849 (2012)

    Article  Google Scholar 

  42. Voiry, D., Yamaguchi, H., Li, J.W., Silva, R., Alves, D.C.B., Fujita, T., Chen, M.W., Asefa, T., Shenoy, V.B., Eda, G., Chhowalla, M.: Enhanced catalytic activity in strained chemically exfoliated WS\(_2\) nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013)

    Article  Google Scholar 

  43. Seeland, J.A., Dahn, J.R.: Abstract 100, The Electrochemical Society Meeting Abstracts, Vol. 2000-2, Phoenix, AZ, Oct 22–27 (2000)

  44. Wan, J., Lacey, S.D., Dai, J., Bao, W., Fuhrer, M.S., Hu, L.: Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem. Soc. Rev. 45, 6742–6765 (2016)

    Article  Google Scholar 

  45. Whittingham, M.S., Jacobson, A.J.: Intercalation Chemistry. Academic, New York (1982)

    Google Scholar 

  46. Kahng, A.B., Muddu, S.: An analytical delay model for RLC interconnects. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16(12), 1507–1514 (1997)

    Article  Google Scholar 

  47. Li, X.C., Mao, J.F., Huang, H.F., Liu, Y.: Global interconnect width and spacing optimization for latency, bandwidth and power dissipation. IEEE Trans. Electron Devices 52(10), 2272–2279 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by SMDP-C2SD, DeitY, MCIT, India. The authors would like to thank Dr. P. S. Gupta and Dr. S. Kanungo for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debaprasad Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Das, D. & Rahaman, H. Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects. J Comput Electron 17, 1695–1708 (2018). https://doi.org/10.1007/s10825-018-1245-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1245-2

Keywords

Navigation