Skip to main content

Advertisement

Log in

High-blocking-voltage UMOSFETs with reformed electric field distribution

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A high-performance vertical GaN metal–oxide–semiconductor field-effect transistor (MOSFET) with a U-shaped gate (UMOSFET) and high blocking voltage is proposed. The main concept behind this work is to reform the electric field distribution to achieve high blocking voltage. The proposed structure includes p-regions in the drift region, which we call reformed electric field (REF) regions. Simulations using the two-dimensional SILVACO simulator reveal the optimum doping concentration, and width and height of the REF regions to achieve the maximum depletion region at the breakdown voltage in the drift region. Also, the electric field distribution in the REF-UMOSFET is reformed by producing additional peaks, which decreases the common peaks under the gate trench. We discuss herein the impact of the height, width, and doping concentration of the REF regions on the ON-resistance (RON) and blocking voltage. The blocking voltage, specific ON-resistance, and figure of merit \( \left( {{\text{FOM}} = \frac{{V_{{{\text{BR}}}}^{2} }}{{R_{{{\text{ON}}}} }}} \right) \) are 1140 V, 0.587 mΩ cm2 (VGS = 15 V, VDS = 1 V), and 2.214 GW/cm2, respectively. The blocking voltage and FOM are increased by about 72 % and 171 % in comparison with a conventional UMOSFET (C-UMOSFET).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Oka, T., Ueno, Y., Ina, T., Hasegawa, K.: Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV. Appl. Phys. Express 7, 021002 (2014). https://doi.org/10.7567/APEX.7.021002

    Article  Google Scholar 

  2. Gupta, C., Chan, S.H., Enatsu, Y., Agarwal, A., Keller, S., Mishra, U.K.: OG-FET: an in situ oxide, GaN interlayer based vertical trench MOSFET. IEEE Electron Device Lett. 37, 1–4 (2016)

    Article  Google Scholar 

  3. Gupta, C., Chan, S.H., Enatsu, Y., Agarwal, A., Keller, S, Mishra, U.K.: A novel device design to lower the on-resistance in GaN trench MOSFETs. In: Device Research Conference (DRC), Newark, DE, USA (2016)

  4. Gupta, C., Lund, C., Chan, S.H., Agarwal, A., Liu, J., Enatsu, Y., et al.: In situ oxide, GaN interlayer-based vertical trench MOSFET (OG-FET) on bulk GaN substrates. IEEE Electron Device Lett. 38, 353–355 (2017)

    Article  Google Scholar 

  5. Oka, T., Ina, T., Ueno, Y., Nishii, J.: 1.8 mΩ cm2 Vertical GaN-based trench metal–oxide–semiconductor field-effect transistors on a free-standing GaN substrate for 1.2-kV-class operation. Appl. Phys. Express 8, 054101 (2015). https://doi.org/10.7567/APEX.8.054101.

    Article  Google Scholar 

  6. Li, R., Cao, Y., Chen, M.S., Chu, R.: 600 V/1.7 Ω Normally-off GaN vertical trench metal–oxide–semiconductor field-effect transistor. IEEE Electron Device Lett. 37, 1466–1469 (2016)

    Article  Google Scholar 

  7. Jozi, M., Orouji, A.A., Fathipour, M.: Control of electric field in 4H-SiC UMOSFET: physical investigation. Physica E: Low-dimens. Syst. Nanostruct. 83, 107–113 (2016)

    Article  Google Scholar 

  8. Orouji, A.A., Mehrad, M.: Breakdown voltage improvement of LDMOSs by charge balancing: an inserted P-layer in trench oxide (IPT-LDMOS). Superlattices Microstruct. 51, 412–419 (2012)

    Article  Google Scholar 

  9. Atlas User’s Manual: Device Simulation Software. Silvaco International, Santa Clara (2015)

    Google Scholar 

  10. Tan, J., Cooper Jr., J.A., Melloch, M.R.: High-voltage accumulation-layer UMOSFET’s in 4H-SiC. IEEE Electron Device Lett. 19, 487–489 (1998)

    Article  Google Scholar 

  11. Bao, M.-t., Wang, Y., Cheng-hao, Yu., Cao, F.: A SiC LDMOS with electric field modulation by a step compound drift region. Superlattices Microstruct. 119, 94–102 (2018)

    Article  Google Scholar 

  12. Dickerson, J.R., Allerman, A.A., Bryant, B.N., Fischer, A.J., King, M.P., Moseley, M.W., et al.: Vertical GaN power diodes with a bilayer edge termination. IEEE Trans. Electron Devices 63, 419–425 (2015)

    Article  Google Scholar 

  13. Wierer, J.J., Dickerson, J.R., Allerman, A.A., Armstrong, A.M., Crawford, M.H., Kaplar, R.J.: Simulations of junction termination extensions in vertical GaN power diodes. IEEE Trans. Electron Devices 64, 2291–2297 (2017)

    Article  Google Scholar 

  14. Kolodzey, J., Chowdhury, E.A., Adam, T.N., Qui, G., Rau, I., Olowolafe, J.O., Suehle, J.S., Chen, Y.: Electrical conduction and dielectric breakdown in aluminum oxide insulators on silicon. IEEE Trans. Electron Devices 47, 121–128 (2000)

    Article  Google Scholar 

  15. Orouji, A.A., Jozi, M., Fathipour, M.: High-voltage and low specific on-resistance power UMOSFET using P and N type columns. Mater. Sci. Semicond. Process. 39, 711–720 (2015)

    Article  Google Scholar 

  16. Shenai, K.: A 55-V, 0.2-mil cm2 vertical trench power MOSFET. IEEE Electron Device Lett. 21, 108–110 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Orouji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, E., Orouji, A.A. High-blocking-voltage UMOSFETs with reformed electric field distribution. J Comput Electron 17, 1584–1595 (2018). https://doi.org/10.1007/s10825-018-1239-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1239-0

Keywords

Navigation